Skip to main content

Alkaliphilic and Alkali-Tolerant Algae

  • Chapter

Abstract

Microorganisms which exhibit good growth at pH values between 10 and 11, but grow poorly at neutral pH values are defined as alkaliphiles (occasionally also as alkalophiles) (Kroll 1990). Figure 10.1 gives an example for the pH profile of growth of the alkaliphilic and salt-tolerant cyanobacterium Spirulina platensis (Fig. 10.1 A) and the alkaliphilic, but far less salt-tolerant bacterium Bacillus firmus (Fig. 10.IB). The alkali-tolerant microbes grow and survive at pH values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arp G, Hofmann J, Reitner J (1998) Microbial fabric formation in spring mounds (“microbialites”) of alkaline salt lakes in the Badain Jaran Sand Sea, PR China. Palaios 13: 581–592

    Google Scholar 

  • Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and micro-algae. Physiol Plant 84: 606–615

    CAS  Google Scholar 

  • Balnokin YV, Medvedev AV (1984) Transport of Na\ K+ and H+ across the plasmalemma of K+-deficient cells of the halophilic alga Dunaliella marítima. Sov J Plant Physiol 31: 625–629

    Google Scholar 

  • Balnokin YV, Popova LG (1994) The ATP-driven Na+-pump in the plasma membrane of the marine unicellular alga, Platymonas viridis. FEBS Lett 343: 61–64

    PubMed  CAS  Google Scholar 

  • Balnokin Y, Popova L, Gimmler H (1997) Further evidence for an ATP-driven sodium pump in the marine alga Platymonas viridis. J Plant Physiol 150: 264–270

    CAS  Google Scholar 

  • Batterton JC, van Baaien C (1971) Growth responses of blue-green algae to sodium concentrations. Arch Microbiol 76: 151–165

    CAS  Google Scholar 

  • Beardall J, Johnston A, Raven J (1998) Environmental regulation of C02-concentrating mechanisms in microalgae. Can J Bot 76:1010–1017

    CAS  Google Scholar 

  • Beattie P, Tan K, Bourne RM, Leach D, Rich PR, Ward FB (1994) Cloning and sequencing of four structural genes for the Na+-translocating NADH-ubiquinone oxidoreductase of Vibrio alginolyticus FEBS Lett 356: 333–338

    PubMed  CAS  Google Scholar 

  • Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32: 953–958

    CAS  Google Scholar 

  • Bental M, Degani H, Avron M (1988) 23Na NMR studies of the intracellular sodium ion concentration in the halotolerant alga Dunaliella salina. Plant Physiol 87:813–817

    PubMed  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Caraco NF, Miller R (1998) Effects of C02 on competition between a cyanobacterium and eukaryotic phytoplankton. Can J Fish Aquat Sci 55: 54–62

    Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    Google Scholar 

  • Ciferri O, Tiboni O (1985) The biochemistry and industrial potential of Spirulina. Annu Rev Microbiol 39: 503–526

    PubMed  CAS  Google Scholar 

  • Dibrov PA, Kostyrko VA, Lazarova RL, Skulachev VP, Smirnova IA (1986a) The sodium cycle. I. Na+ dependent motility and modes of membrane energisation in the marine alkalo- tolerant Vibrio alginolyticus. Biochim Biophys Acta 850: 449–457

    PubMed  CAS  Google Scholar 

  • Dibrov PA, Lazarova RL, Skulachev VP, Verkhovskaya ML (1986b) The sodium cycle. II. Na+ - coupled oxidative phosphorylation in Vibrio alginolyticus. Biochim Biophys Acta 850: 458–465

    PubMed  CAS  Google Scholar 

  • Doemel WN, Brock TD (1977) Structure, growth and decomposition of laminated algal bacteria mats in alkaline hot springs. Appi Environ Microbiol 34: 433–452

    CAS  Google Scholar 

  • Dubey RC, Sharma KN (1989) Acid and alkaline phosphatases in rice seedlings grown under salinity stress. Indian J Plant Physiol 32: 217–223

    Google Scholar 

  • Duff KE, Smol JP (1994) Chrysophycean cyst flora from British Columbia ( Canada) lakes. Nova Hedwigia 58: 353–389

    Google Scholar 

  • Ferris FG (1993) Microbial biomineralization in natural environments. Earth Sci 47: 233–250

    CAS  Google Scholar 

  • Ferris FG, Wiese RG, Fyfe WS (1994) Precipitation of carbonate minerals by microorganisms: implications for silicate weathering and the global carbon dioxide budget. Geomicrobiol J 12: 1–13

    CAS  Google Scholar 

  • Fry IV, Huflejt M, Erber WWA, Peschek GA, Packer L (1986) The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 244: 686–691

    PubMed  CAS  Google Scholar 

  • Funteu F, Guet C, Wu B, Tremolieres A (1997) Effects of environmental factors on the lipid metabolism in Spirulina platensis. Plant Physiol Biochem 35: 63–71

    CAS  Google Scholar 

  • Gabbay-Azaria R, Schonfeld M, Tel-Or S, Messinger R, Tel-Or E (1992) Respiratory activity in the marine cynobacterium Spirulina subsalsa and its role in salt tolerance. Arch Microbiol 157: 183–190

    CAS  Google Scholar 

  • Garcia-Ruiz R, Hernandez I, Lucena J, Niell FX (1997) Preliminary studies on the significance of alkaline phosphatase activity in the diatom Phaeodactylum tricornutum Bohlin. Sci Mar 61: 517–525

    Google Scholar 

  • Gimmler H (2000) Primary sodium plasma membrane ATPase in salt-tolerant algae—facts and fiction. J Exp Bot 51: 1171–1178

    PubMed  CAS  Google Scholar 

  • Gimmler H, Kugel H, Leibfritz, Mayer A (1988) Cytoplasmic pH of Dunaliella parva and Dunaliella acidophila as monitored by in vivo 31P-NMR spectroscopy and the DMO method. Physiol Plant 74: 521–530

    CAS  Google Scholar 

  • Grant WD, Horikoshi K (1989) Alkaliphiles. In: Da Costa MS, Duarte FC, Williams RAD (eds) The microbiology of extreme environments and its biotechnological potential. Elsevier, Amsterdam, pp 346–366

    Google Scholar 

  • Grant WD, Tindali WJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 25–54

    Google Scholar 

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75: 255–270

    CAS  Google Scholar 

  • Hayashi M, Unemoto T (1987) Subunit components and their roles in the sodium-transport NADH:quinone reductase of a marine bacterium, Vibrio alginolyticus. Biochim Biophys Acta 890: 47–54

    CAS  Google Scholar 

  • Hecky RE, Kilham P (1973) Diatoms in alkaline saline lakes: ecology and geochemical implications. Limnol Oceanogr 18: 53–71

    CAS  Google Scholar 

  • Hellebust JA (1988) A comparative study of sodium and osmotic requirements for growth and nutrient uptake of two related green flagellates, Dunaliella tertiolecta and Chlamydomonas pulsatilla. Arch Microbiol 143: 11–14

    Google Scholar 

  • Hernandez I, Niell FX, Fernandez JA (1992) Alkaline phosphatase in Porphyra umbilicalis L. Kützing. J Exp Mar Biol Ecol 159: 1–13

    Google Scholar 

  • Hernandez I, Niell FX, Fernandez JA (1996) Alkaline phosphatase activity of the red alga Corallina elongata Ellis et Solander. Sci Mar 60: 297–306

    CAS  Google Scholar 

  • Horikoshi K (1998) Alkaliphiles. In: Horikoshi K, Grant WD (eds) Extremophiles. Wiley-Liss, New York, pp 155–179

    Google Scholar 

  • Horikoshi K, Akiba T (1982) Alkalophilic microorganisms. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Iltis A (1974) Phytoplankton of natroned waters at Kanem Chad. Part 7. Structure of population. Cah ORSTOM Ser Hydrobiol 8: 51–76

    Google Scholar 

  • Imhoff JF, Sahl HG, Soliman GSH, Truper HG (1979) The Wadi Natrun (Egypt). Chemical and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1: 219–234

    Google Scholar 

  • Ivey DM, Zemsky J, Guffant AA, Sturr MG, Hicks DB, Krulwich TA, Gilmour R, Ito M (1998) Alkaliphile bioenergetics. In: Horikoshi K, Grant WD (eds) Extremophiles. Wiley-Liss, New York, pp 181–210

    Google Scholar 

  • Javor B (1989) Hypersaline environments. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Joset F,Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Plant Physiol 96: 738–744

    Google Scholar 

  • Katz A, Kaback HR, Avron M (1986) Antiport in isolated plasma membrane vesicles from the halotolerant alga Dunaliella salina. FEBS Lett 202: 141–144

    CAS  Google Scholar 

  • Katz A, Pick U, Avron M (1989) Characterization and reconstitution of the antiporter from the plasma membrane of the halotolerant alga Dunaliella. Biochim Biophys Acta 983: 9–14

    PubMed  CAS  Google Scholar 

  • Katz, A, Bental M, Degani H, Avron M (1991) In vivo pH regulation by an antiporter in the halotolerant alga Dunaliella salina. Plant Physiol 96: 110–115

    PubMed  CAS  Google Scholar 

  • Katz A, Pick U, Avron M (1992) Modulation of Na+/H+antiporter activity by extreme pH and salt in the halotolerant alga Dunaliella salina. Plant Physiol 100: 1225–1229

    Google Scholar 

  • Ken-Dror S, Preger R, Avi-Dor Y (1986) Functional characterization of the uncoupler-insensitive Na+-pump of the halotolerant bacterium BA,. Arch Biochem Biophys 244: 122–127

    PubMed  CAS  Google Scholar 

  • Kroll RG (1990) Alkalophiles. In: Edwards C (ed) Microbiology of extreme environments. McGraw-Hill, New York, pp 55–92

    Google Scholar 

  • Krulwich TA, Guffanti AA (1983) Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol 24: 173–214

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Guffanti AA (1989) Alkalophilic bacteria. Annu Rev Microbiol 43: 435–463

    PubMed  CAS  Google Scholar 

  • Krulwich AK, Hicks DB, Seto-Young D, Guffanti AA (1988) The bioenergetics of alkalophilic bacilli. CritRev Microbiol 16: 15–36

    CAS  Google Scholar 

  • Krulwich TA, Guffanti AA, Seto-Young D (1990) pH homeostasis and bioenergetic work in alkalophiles. FEMS Microbiol Rev 75:271–278

    CAS  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Guffanti AA (1997) Mechanisms of cytoplasmatic pH regulation in alkaliphilic strains of Bacillus. Extremophiles 1: 163–169

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:402–438

    Google Scholar 

  • Lara C, Rodriguez R, Guerrero MG (1993) Nitrate transport in the cyanobacterium Anacystis nidulans. Physiol Plant 89: 582–587

    CAS  Google Scholar 

  • Lucas WJ, Berry JA (eds) (1984) Inorganic carbon uptake by aquatic photosynthetic organisms. American Soc Plant Physiol, Rockville, Maryland Markarova EN,

    Google Scholar 

  • Kirikova NN, Tambiev AK, Gusev MV (1997) Two questions about physiological role of sodium in cyanobacteria. Vestn Mosk Univ Ser XVI Biol 0 (1): 3–7

    Google Scholar 

  • Merz MUE (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26: 81–202

    Google Scholar 

  • Merz M, Schlue WR, Zankl H (1995) pH-measurements in the sheath of calcifying cyanobacteria. Bull Inst Oceanogr 14(2):281–289

    Google Scholar 

  • Miller AG, Canvin DT (1987) Na+ stimulation of photosynthesis in the cyanobacterium Synechococcus UTEX 625 grown on high levels of inorganic carbon. Plant Physiol 84: 118–124

    PubMed  CAS  Google Scholar 

  • Nausch M (1998) Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquat Microb Ecol 16: 87–94

    Google Scholar 

  • Nitschmann WH, Peschek GA (1985) Modes of proton translocation across the cell membrane of respiring cyanobacteria. Arch Microbiol 14: 330–336

    Google Scholar 

  • Packer L, Spath S, Martin JB, Roby C, Bligny R (1987) 23Na and 31P-NMR studies of the effect of salt on the fresh water cyanobacterium Synechococcus 6311. Arch Biochem Biophys 256:354–361

    PubMed  CAS  Google Scholar 

  • Park C, Moon JY, Cokie P, Webster DA (1996) Na+ translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles. Biochemistry 35: 11895–11900

    PubMed  CAS  Google Scholar 

  • Paschinger H (1977) DCCD-induced sodium uptake by Anacystis nidulans. Arch Microbiol 113: 285–292

    PubMed  CAS  Google Scholar 

  • Peschek GA (1987) Respiratory electron transport. In: Fay P, Van Baaien C (eds) The cyanobacteria. Elsevier, New York, pp 119–161

    Google Scholar 

  • Pfenninger-Li XD, Albracht SPJ, van Beizen R, Dimroth P (1996) NADH: ubiquinone oxi- doreductase of Vibrio alginolyticus: purification, properties and reconstitution of the Na+ pump. Biochemistry 35: 6233–6242

    PubMed  CAS  Google Scholar 

  • Pick U (1992) ATPases and ion transport in Dunaliella. In: Avron M, Ben-Amotz A (eds) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton, pp 63–97

    Google Scholar 

  • Popova LG, Balnokin YV (1992) H+ tranclocating ATPase and antiport activities in the plasma membrane of the marine alga Platymonas viridis. FEBS Lett 309: 333–336

    PubMed  CAS  Google Scholar 

  • Popova L, Balnokin Y, Dietz KJ, Gimmler H (1998) Na+-ATPase from the plasma membrane of the marine alga Tretraselmis (Platymonas) viridis forms a phosphorylated intermediate. FEBS Lett 426: 161–164

    PubMed  CAS  Google Scholar 

  • Popova L, Balnokin Y, Dietz KJ, Gimmler H (1999) Characterization of phosphorylated intermediates synthesized during the catalytic cycle of the sodium adenosine triphosphatase in the plasma membrane of the marine unicellular alga Tetraselmis (Platymonas) viridis. J Plant Physiol 155: 302–309

    CAS  Google Scholar 

  • Price GD, Badger MR (1989) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Plant Physiol 91: 505–513

    PubMed  CAS  Google Scholar 

  • Quisel JD, Wykoff DD, Grossman AR (1996) Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii. Plant Physiol 111: 839–848

    PubMed  CAS  Google Scholar 

  • Raven JA (1984) The C02 concentrating mechanism. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Soc Plant Physiol, Rockville, Maryland

    Google Scholar 

  • Raven JA (1990) Sensing pH. Plant Cell Environ 13: 721–730

    CAS  Google Scholar 

  • Raven JA, Falkowski PG (1999) Oceanic sink for atmospheric CO2. Plant Cell Environ 22: 741–755

    CAS  Google Scholar 

  • Remis D, Simonis W, Gimmler H (1992) Measurement of the transmembrane electrical potential of Dunaliella acidophila by microelectrodes. Arch Microbiol 158: 350 - 355

    CAS  Google Scholar 

  • Richmond A (1986) Microalgae of economic potential. In: Richmond A (ed) Handbook of microalgae mass culture. CRC Press, Boca Raton, pp 199–243

    Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 85–121

    Google Scholar 

  • Richmond A, Karg S, Boussiba S (1982) Effects of bicarbonate and carbon dioxide on the competition between Chlorella vulgaris and Spirulina platensis. Plant Cell Physiol 23: 1411–1418

    CAS  Google Scholar 

  • Ritchie R (1991) Membrane potential and pH control in the cyanobacterium Synechococcus R-2 CAnacystis nidulans) PCC 7942. J Plant Physiol 137: 409–418

    Google Scholar 

  • Ritchie R (1992) Sodium transport and the origin of the membrane potential in the cyanobacterium Synechococcus R-2 (Anacystis nidulans) PCC 7942. J Plant Physiol 139: 320–330

    CAS  Google Scholar 

  • Rivkin RB, Swift E (1980) Characterization of alkaline phosphatase and organic phosphorus utilization in the oceanic dinoflagellate Pyrocystis noctiluca. Mar Biol 61: 1–8

    CAS  Google Scholar 

  • Schiller P, Heilmeier H, Härtung W (1997) Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol 136: 603–611

    CAS  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry. An analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Schlesinger P, Belkin S, Boussiba S (1996) Sodium deprivation under alkaline conditions causes a rapid death of the filamentous cyanobacterium Spirulina platens is. J Phycol 32: 608–613

    CAS  Google Scholar 

  • Sethi V, Kaushik A (1993) Tolerance of Anabaena oryzae to salt stress. Geobios (Jodhpur) 20: 10–13

    Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol 34: 649–657

    CAS  Google Scholar 

  • Shono M, Wada M, Fujii T (1995) Partial purification of a Na+-ATPase from the plasma membrane of the marine alga Heterosigma akashiwo. Plant Physiol 108: 16150–1621

    Google Scholar 

  • Shono M, Hara Y, Wada M, Fujii T (1996) A sodium pump in the plasma membrane of the marine alga Heterosigma akashiwo. Plant Cell Physiol 37: 385–388

    CAS  Google Scholar 

  • Shukla SP, Singh SH, Mishra AK (1997) Energetics of alkaline phosphatase (monoesterase) activity in antarctic and tropical isolates of a cyanobacterium, Anabaena. Cytobios 92: 29–33

    CAS  Google Scholar 

  • Skulachev VP (1985) Membrane-linked energy transductions. Bioenergetic functions of sodium. Proton is not unique as a coupling ion. Eur J Biochem 151: 199–208

    PubMed  CAS  Google Scholar 

  • Skulachev VP (1988) Membrane energetics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Skulachev VP (1994) The latest views from the sodium world. Biochim Biophys Acta 1187: 216–221

    CAS  Google Scholar 

  • Stein WD (1986) Transport and diffusion across cell membranes. Academic Press, San Diego, pp 477–571

    Google Scholar 

  • Talling JF, Wood RB, Prosser MV, Baxter RM (1973) The upper limit of photosynthetic productivity by phytoplakton: evidence from Ethiopian soda lakes. Freshwater Biol 3: 53–76

    Google Scholar 

  • Thielmann J, Tolbert NE, Goyal A, Senger H (1990) Two systems for concentrating carbon dioxide and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol 92: 622–629

    PubMed  CAS  Google Scholar 

  • Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18: 995–998

    CAS  Google Scholar 

  • Tokuda H, Unemoto T (1981) A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. Biochem Biophys Res Commun 102: 265–271

    PubMed  CAS  Google Scholar 

  • Tokuda H, Unemoto T (1984) Na+ is translocated at NADP: quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J Biol Chem 259: 7785–7790

    PubMed  CAS  Google Scholar 

  • Tokuda H, Ugadawa T, Unemoto T (1985) Generation of the electrical potential of Na+ by the Na+ motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus. FEBS Lett 183: 95–98

    PubMed  CAS  Google Scholar 

  • Ullrich WR, Glaser E (1982) Sodium-phosphate cotransport in the green alga Ankistrodesmus braunii. Plant Sci Lett 27: 155–161

    CAS  Google Scholar 

  • Ullrich-Eberius CJ, Yingchol Y (1974) Phosphate uptake and its dependence in halophytic and glycophytic algae and higher plants. Oecologica 17: 17–26

    Google Scholar 

  • Unemoto T, Hayashi M (1993) Na+-translocating NADH-quinone reductase of marine and halophilic bacteria. J Bioenerg Biomembr 25: 385–391

    PubMed  CAS  Google Scholar 

  • Vonshak A, Boussiba S, Abeliovich A, Richmond A (1983) Production of Spirulina platensis biomass: maintenance of monoalgal cultures outdoors. Biotechnol Bioeng 25: 341–350

    PubMed  CAS  Google Scholar 

  • Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150: 414–420

    Google Scholar 

  • Wada M, Satoh S, Kasamo K, Fujii T (1989) Presence of a sodium-activated ATPase in the plasma membrane of the marine raphidophycean Heterosigma akashiwo. Plant Cell Physiol 30: 923–928

    CAS  Google Scholar 

  • Wada M, Urayama O, Satoh S, Hara Y, Ikawa Y, Fujii T (1992) A marine algal Na+-activated ATPase possesses an immunologically identical epitope to Na+, K+-ATPase. FEBS Lett 309: 272–274

    PubMed  CAS  Google Scholar 

  • Walther K, Fries L (1976) Extracellular alkaline phosphatase in multicellular marine algae and their utilization of glycero-phosphate. Physiol Plant 36: 118–122

    CAS  Google Scholar 

  • Weiss M, Pick U (1990) Transient Na+ flux following hyperosmotic shock in the halotolerant alga Dunaliella salina. J Plant Physiol 136: 429–438

    CAS  Google Scholar 

  • Wood RB, Talling JF (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67

    CAS  Google Scholar 

  • Yates KK, Robbins LL (1995) Experimental evidence for a CaCO3 precipitation mechanism for marine Synechocystis. Bull Inst Oceanogr14:51–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gimmler, H., Degenhard, B. (2001). Alkaliphilic and Alkali-Tolerant Algae. In: Rai, L.C., Gaur, J.P. (eds) Algal Adaptation to Environmental Stresses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59491-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59491-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63996-8

  • Online ISBN: 978-3-642-59491-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics