Skip to main content

Successful Administration of the NO Synthase Inhibitor 546C88 as a Delayed Continuous Infusion in a Baboon Model of Septic Shock

  • Conference paper
Shock, Sepsis, and Organ Failure
  • 73 Accesses

Abstract

Nitric oxide (NO) as both a vasodilator and under certain circumstances a cyto-toxic molecule is suggested as one of the critical mediators of severe sepsis and septic shock. Whether NO is really a central molecule in sepsis and whether inhibition/scavenging has more beneficial or detrimental effects are, however, controversial questions with conflicting data. Many studies demonstrate either one or both effects; these have been thoroughly reviewed recently [1].

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kilbourn RG, Szabo C, Traber DL (1997) Beneficial versus detrimental effects of nitric oxide synthase inhibitors in circulatory shock: lessons learned from experimental and clinical studies. Shock 7:235–246

    Article  PubMed  CAS  Google Scholar 

  2. MacMicking JD, Nathan C, Hom G, et al (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641–650

    Article  PubMed  CAS  Google Scholar 

  3. Wei X, Charles IG, Smith A, et al (1995) Altered immuno responses to mice lacking inducible nitric oxide synthase. Nature 375:408–411

    Article  PubMed  CAS  Google Scholar 

  4. Laubach VE, Shesely EG, Smithies O, Sherman PA (1995) Mice lacking inducible nit ric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA 92:10688–10692

    Article  PubMed  CAS  Google Scholar 

  5. Traber DL, Traber LD, Redl H, Schlag G (1993) Models of endotoxemia in sheep. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer-Verlag, Berlin Heidelberg New York. pp 1031–1047

    Chapter  Google Scholar 

  6. Krösl P, Pretorius J, Redl H, Schlag G (1994) Myocardial function in septic sheep. Shock 1:325–334

    Article  PubMed  Google Scholar 

  7. Dehring DJ (1993) Sheep and pigs as animal models of bacteremia. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer-Verlag, Berlin Heidel-berg New York. pp. 1060–1075

    Chapter  Google Scholar 

  8. Natanson C, Danner RL, Fink MP, et al (1988) Cardiovascular performance with E. coli challenges in a canine model of human sepsis. Am J Physiol 254:H558–H569

    PubMed  CAS  Google Scholar 

  9. Hinshaw LB, Archer LT, Beller-Todd BK, et al (1980) Survival of primates in LDIOO septic shock following steroid antibiotic therapy. J Surg Res 28:151–170

    Article  PubMed  CAS  Google Scholar 

  10. Schlag G, Redl H, Davies I, van Vuuren CJJ, Smuts P (1993) Live Escherichia coli sepsis models in baboons. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer-Verlag, BerlinHeidelberg New York. pp 1076–1107

    Chapter  Google Scholar 

  11. Van Zee KJ, DeForge LE, Fischer E, et al (1991) IL-8 in septic shock, endotoxemia, and after IL-I administration. J Immuno I 146:3478–3482

    Google Scholar 

  12. Wichterman KA, Baue AE, Chaudry IH (1980) Sepsis and septic shock — A review of laboratory models and a proposal. J Surg Res 29:189–201

    Article  PubMed  CAS  Google Scholar 

  13. Fink MP, Heard SO (1990) Laboratory models of sepsis and septic shock. J Surg Res 49:186–196

    Article  PubMed  CAS  Google Scholar 

  14. Chaudry IH, Ayala A, Singh G, Wang P, Hauptman JG (1993) Rodent models of endotoxemia and sepsis. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer-Verlag, Berlin Heidelberg New York, pp 1048–1059

    Chapter  Google Scholar 

  15. Dehring DJ, Steinberg SM, Wismar BL, Lowery BD, Carey LC, Cloutier CT (1987) Complement depletion in a porcine model of septic acute respiratory disease. J Trauma 27:615–625

    Article  PubMed  CAS  Google Scholar 

  16. Cobb JP, Danner RL (1996) Nitric oxide and septic shock. JAMA 275:1192–1196

    Article  PubMed  CAS  Google Scholar 

  17. Rees DD (1998) Inhibition of the overproduction of nitric oxide in septic shock using NG-methyl-L-arginine. In: Schlag G, Redl H (eds) Shock, Sepsis and Organ Failure — Scavenging of Nitric Oxide and Inhibition of its Production. Sixth Wiggers Bernard Conference 1997. Springer-Verlag, Berlin Heidelberg New York. (In press)

    Google Scholar 

  18. Schlag G, Redl H, Khakpour Z, Davies J, Pretorius J (1993) Hypovolemic-traumatic shock models in baboons. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer-Verlag, Berlin Heidelberg New York. pp. 384–402

    Chapter  Google Scholar 

  19. Strohmaier W, Werner ER, Wachter H, Redl H, Schlag G (1996) Pteridine and nitrite/nitrate formation in experimental septic and traumatic shock. Shock 6:254–258

    Article  PubMed  CAS  Google Scholar 

  20. Evans T, Carpenter A, Kinderman H, Cohen J (1993) Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 41:77–78

    PubMed  CAS  Google Scholar 

  21. Hussein Z, Jordan B, Fook-Sheung C, Guntupalli K, Watson D, Vincent JL (1995) Pharmaco-kinetics of 546C88 in patients with septic shock: preliminary results. Abstract: 8th ECICM

    Google Scholar 

  22. Yao Y-M, Bahrami S, Leichtfried G, Redl H, Schlag G (1996) Significance of NO in hemor-rhagic-induced hemodynamic alterations, organ injury, and mortality in rats. Am J Physiol 270:H1616–H1623

    PubMed  CAS  Google Scholar 

  23. Klabunde RE, Ritger RC (1991) NG-Monomethyl-L-arginine (NMMA) restores arterial blood pressure but reduces cardiac output in a canine model of endotoxic shock. Biochem Biophys Res Commun 178:1135–1140

    Article  PubMed  CAS  Google Scholar 

  24. Cobb JP, Natanson C, Quezado ZMN, et al (1995) Differential hemodynamic effects of LNMMA in endotoxemic and normal dogs. Am J Physiol 268:H1634–H1642

    PubMed  CAS  Google Scholar 

  25. Stratman R, Cheng W, Cunningham JN (1994) Nitric oxide inhibition in the treatment of the sepsis syndrome is detrimental to tissue oxygenation. J Surg Res 57:93–98

    Article  Google Scholar 

  26. Schumacker P, Kazaglis J, Connolly H (1995) Systemic and gut oxygen extraction during endotoxemia: role of nitric oxide synthesis. Am J Respir Crit Care Med 151:107–115

    PubMed  CAS  Google Scholar 

  27. Mitaka C, Hirara Y, Ichikawa K (1995) Effects of nitric oxide inhibitor on hemodynamic change and oxygen delivery in septic dogs. Am J Physiol 268:H2017–H2023

    PubMed  CAS  Google Scholar 

  28. Billiar T, Curran R, Habrecht B (1990) Modulation of nitrogen oxide synthesis in vivo: NG-monomethyl-L-arginine inhibits endotoxin-induced nitrite/nitrate biosynthesis while promoting hepatic damage. J Leukocyte Biol 48:565–569

    PubMed  CAS  Google Scholar 

  29. Spain DA, Wilson MA, Garrison RN (1994) Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion. Surgery 116:322–331

    PubMed  CAS  Google Scholar 

  30. Minnard E, Shou J, Naama H (1994) Inhibition of nitric oxide synthesis is detrimental during endotoxemia. Arch Surg 129:142–148

    Article  PubMed  CAS  Google Scholar 

  31. Tiao G, Rafferty J, Ogle C, Fischer JE, Hasseigren PO (1994) Detrimental effect of nitric oxide synthase inhibition during endotoxemia may be caused by high levels of tumor necrosis factor and interleukin-6. Surgery 116:332–338

    PubMed  CAS  Google Scholar 

  32. Kubes P, Kanwar S, Niu XF, Gaboury JP (1993) Nitric oxide synthesis inhibition induces leukocyte adhesion via Superoxide and mast cells. FASEB J 7:1293–1299

    PubMed  CAS  Google Scholar 

  33. Saetre T, Smiseth OA, Scholz T, et al (1996) Nitric oxide synthase inhibition reduces venous return in porcine endotoxemia. Am J Physiol 271:H1325–H1332

    PubMed  CAS  Google Scholar 

  34. O’Riordain MG, O’Riordain DS, Molloy RG, Mannick JA, Rodrick ML (1996) Dosage and timing of anti TNF alpha antibody treatment determine its effect on resistance to sepsis after injury. J Surg Res 64:95–101

    Article  PubMed  Google Scholar 

  35. Statman R, Cheng W, Cunningham JN, et al (1994) Nitric oxide inhibition in the treatment of the sepsis syndrome is detrimental to tissue oxygenation. J Surg Res 57:93–98

    Article  PubMed  CAS  Google Scholar 

  36. Wang Y, Mathews WR, Guido DM, Farhood A, Jaeschke H (1995) Inhibition of nitric oxide synthesis aggravates reperfusion injury after hepatic ischemia and endotoxemia. Shock 4:282–288

    Article  PubMed  CAS  Google Scholar 

  37. Ayuse T, Brienza N, Revelry JP, Boitnott JK, Robotham JL (1995) Role of nitric oxide in porcine liver circulation under normal and endotoxemic conditions. J Appl Physiol 78:1319–1329

    PubMed  CAS  Google Scholar 

  38. Schlag G, Redl H, Bahrami S, Davies J (1996) In baboon sepsis the protective effect of bactericidal permeability increasing protein (BPI21) is related to its antibacterial rather than anti-endotoxin properties. Crit Care Med 24:A26

    Google Scholar 

  39. Nava E, Salazar FJ (1997) Comparative effects of nitric oxide synthesis inhibition and cate-cholamine treatment in a rat model of endotoxin shock. Eur J Clin Invest 27:673–679

    Article  PubMed  CAS  Google Scholar 

  40. Fischer SR, Deyo DJ, Bone HG, McGuire R, Traber LD, Traber DL (1997) Nitric oxide syn-thase inhibition restores hypoxic pulmonary vasoconstriction in sepsis. Am J Respir Crit Care Med 156:833–839

    PubMed  CAS  Google Scholar 

  41. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88:4651–4655

    Article  PubMed  CAS  Google Scholar 

  42. Mulligan MS, Hevel JM, Marietta MA, Ward PA (1991) Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc Natl Acad Sci U S A 88:6338–6342

    Article  PubMed  CAS  Google Scholar 

  43. Geffner JR, Trevani AS, de D’Elia I, Diament M, Klein D, Giordano M (1995) Involvement of nitric oxide in the regulation of peripheral blood leukocyte counts. J Leukoc Biol 58:391–394

    PubMed  CAS  Google Scholar 

  44. Redl H, Schlag G, Bahrami S (1998) Endotoxemia in primate models. In:Morrison DC (ed) Endotoxin in Health and Disease. (In press)

    Google Scholar 

  45. Redl H, Schlag G, Bahrami S, Yao Y-M (1996) Animal models as the basis of pharmacologic interventions in trauma and sepsis. World J Surg 20:487–492

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlag, G., Redl, H., Gasser, H., Khakpour, Z., Davies, J. (1999). Successful Administration of the NO Synthase Inhibitor 546C88 as a Delayed Continuous Infusion in a Baboon Model of Septic Shock. In: Schlag, G., Redl, H. (eds) Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58630-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58630-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63672-1

  • Online ISBN: 978-3-642-58630-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics