Skip to main content

Principle of cold-adaptation in the derivation of live attenuated respiratory virus vaccines

  • Chapter
Biotechnological Applications of Cold-Adapted Organisms
  • 546 Accesses

Abstract

Adaptation of selected human respiratory viruses to grow at suboptimal temperatures has provided a valuable tool for use in the development of live respiratory virus vaccines in man. The early report that live influenza virus vaccines can be made suitable for administration to children and young adults by passage at 25°C, stimulated our interest in deterring whether cold-adaptation can be used regularly to obtain attenuated vaccines that were well tolerated by and immunogenic for humans of all ages.1,2 This chapter describes the development, characterization and evaluation of the cold-adapted respiratory viruses in animals and also in limited testing in man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrova GI, Polezhaev FI, Budilovsky GN, Garrueshova LV. Recombinant cold-adapted attenuated influenza A vaccines for use in children. Reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccine. Infect Immun 1984; 44:734–740.

    CAS  Google Scholar 

  2. Maassab HF, DeBorde DC. Development and characterization of cold-adapted virus for use as live virus vaccines. Vaccine 1985; 3:355–369.

    Article  CAS  Google Scholar 

  3. Maassab HF, Herlocher ML, Bryant ML. Live influenza virus vaccine. In: Orenstein WA, Plotkin SM, eds. Vaccines, 3rd ed. Philadelphia, London, Toronto, Montreal, Sydney, Tokyo: WB Saunders Co, Division of Harourt Brace and Co., 1998 (in press).

    Google Scholar 

  4. Enders JF, Shaffa ME Studies on natural immunity to pneumococcus type 14. Capacity of strains of pneumococcus type 111 to grow at 4ic and their virulence for rabbits. J Exp Med 1936; 7:64–70.

    Google Scholar 

  5. Burnet FM. The Use of Developing Egg in Virus Research. London, HM Stationary Office, Great Britain Medical Research Council, Special Report Series No 220, 1936.

    Google Scholar 

  6. Li S, Mo D, Bilsel P, Bryant M. Recombinant inactivated and cold-adapted vaccines. Abstract: 10th International Conference on Negative Strand Viruses: Emergence and Reemergence of negative strand viruses. Sept 21–26 Dublin, Ireland, 1997.

    Google Scholar 

  7. Davenport FM, Hennessy AV, Maassab HF, Minuse E, Clark F, Abrams GD, Mitchell JR. Pilot studies on recombinant cold-adapted live type A and type B influenza virus vaccines. J Infect Dis 1977; 136:17–23.

    Article  CAS  Google Scholar 

  8. Maassab, HF. Biologic and immunologic characteristics of cold-adapted influenza viruses. 1969;102: 728–732.

    Google Scholar 

  9. Kilbourne ED. The control of influenza virus. In: Kilbourne ED, ed. Influenza. London: Plenum Medical Book Co, 1987:291–317.

    Chapter  Google Scholar 

  10. Cox NJ, Kitame F, Kendal AP, Maassab HF, Naeve C. Identification of sequence changes in the cold-adapted, live attenuated influenza vaccine strains, A/Ann Arbor/6/60 (H2N2). Virology 1988; 167:554–562.

    CAS  Google Scholar 

  11. Herlocher ML, Maassab HF, Webster RG. Molecular and biological changes in the cold-adapter “master strain” A/AA/6/60-H2N2 influenza virus. Proc Nat Acad Sci USA 1993; 90:6032–6036.

    Article  CAS  Google Scholar 

  12. Maassab HF, DeBorde DC, Donabedian AM, Smitka CW. Development of cold-adapted “master strain” for the type B influenza virus vaccines. In: Lerner RA, Chanock RM, Brown F, eds. Vaccines 85. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1985:327–332.

    Google Scholar 

  13. DeBorde DC, Donabedian AM, Herlocher ML, Naeve CW, Maassab HF. Sequence comparison of wild-type and cold-adapted B/Ann Arbor/1/66 influenza virus genes. Virology 1988; 163:429–443.

    Article  CAS  Google Scholar 

  14. Clements ML, Betts RF, Murphy BR. Advantage of live attenuated cold-adapted influenza A virus vaccines in seronegative children. Lancet 1989; 2:705–708.

    Google Scholar 

  15. Wright PF, Okabe N, McKee JJ, Maassab HF, Karzon DT. Cold-adapted recombinant influenza A virus vaccines in seronegative children. J Infect Dis 1982; 146:71–79.

    Article  CAS  Google Scholar 

  16. Wright PF, Ross KB, Thompson J, Karzon DT. Influenza infection in young children: Primary natural infection an protective efficacy of live-vaccine-induced or naturally acquired immunity. N Engl J Med 1977; 296:829–834.

    Article  CAS  Google Scholar 

  17. Jones PD, Ada GL. Influenza-specific antibody secreting cells and B cell memory in the murine line after imunization with wild-types, cold-adapted variant and inactivated influenza viruses. Vaccine 1987; 5:244–248.

    Article  CAS  Google Scholar 

  18. Belshe RB, Mendelman PM, Treaner J, King J, Gruber W, Piedia P, Bernstein D, Hayden F, Kotloff K, Zangwell K, Iacuzio D, Wolff M. The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenza virus in children. N Engl J Med 1998; 338:1405–1412.

    Article  CAS  Google Scholar 

  19. Crowe JJ, Collins PL, Chanock RM, Murphy BR. Vaccines against respiratory syncytial viruses and parainfluenza type 3 virus. In: Levine MM, Woodrow GC, Kaper JB, Cobon GS, eds. New Generation of Vaccines, 2nd ed, revised and expanded. New York, Basel, Hong Kong: Marcel Dekker Inc, 1997:711–725.

    Google Scholar 

  20. Connors M, Giesu N, Aulkarni A, Firestone C, Morse H III, Murphy BR. Enhanced pulmonary histopathology induced by respiratory syncytial virus (RSV) challange of formalininactivated RSV-immunized BALB/C mice is abrogated by depletion of interleukin (IL-4) and IL-10. J Virol 1994; 68:5321–5325.

    CAS  Google Scholar 

  21. Collins P, McIntosh K, Chanock RM. Respiratory syncytial virus. In: Fields DN, Knipe DN, Howley PM, Chanock RM, Melnick JL, Nonath TP, Roizman B, Strauss, SE, eds. Fields Virology, 3rd ed, vol 2. Philadelphia New York: Lippincott-Raven, 1996:1313–1352.

    Google Scholar 

  22. Herlocher ML, Ewasyshyn M, Sambhara S, Gharaee-Kermani M, Cho D, Lai J, Klein M, Maassab HF. Immunologic properties of plaque purified strains of live-attenuated respiratory syncytial virus (RSV) for human vaccine. Vaccine 1998 (in press).

    Google Scholar 

  23. Whithead S, Juhasz K, Firestone Cai-Yen, Collins P, Murphy BR. Recombinant respiratory syncytial virus (RSV) bearing a set mutations from cold-passaged RSV is attenuated in chimpanzees. J Virol 1998; 72:4467–4471.

    Google Scholar 

  24. Kim H, Arrobis JO, Brant C, Wright P, Jodes D, Chanock R, Parrott RH. Safety and immunogenicity of temperature-sensitive (ts) mutant of respiratory syncytial virus (RSV) in infants and children. Pediatrics 1973; 52:56–63.

    CAS  Google Scholar 

  25. Ray R, Galuiski M, Hemingway B, Newman F, Belshe RB. Temperature sensitive phenotype of the human parainfluenza virus type 3 candidate vaccine strains (cp45) correlates with a defect in the L gene. J Virol 1996; 70:580–584.

    CAS  Google Scholar 

  26. Belshe RB, Hissom FK. Cold adaptation of parainfluenza virus type 3: induction of three phenotypic markers. J Med Virol 1982;10:235–242.

    Article  CAS  Google Scholar 

  27. Belshe RB, Hisson FK. Cold-adaptation of influenza virus type 3 induction of three phenotypic markers. J Med Virol 1982; 10:235–242.

    Article  CAS  Google Scholar 

  28. Karron RA, Wright PF, Hall SL, Makhene M, Thompson J, Burns J, Tollefson S, Steinhoff MC, Wilson M, Harris D, Clements ML, Murphy BR. A live attenuated bovine parainfluenza virus type 3 vaccine is safe, infectious, immunogenic and phenotypically stable in infants and children. J Infect Dis 1995; 171:1107–1114.

    Article  CAS  Google Scholar 

  29. Tao Tao, Durbin A, Whitehead S, Davoodi F, Collins PL, Murphy BR. Recovery of a fully viable chimeric human parainfluenza virus (PIV) type 3 in which the hemagglutinin - neuraminidase and fusion glycoproteins have been replaced by those of PIV type 1. J Virol 1998; 72:2955–2961.

    CAS  Google Scholar 

  30. Karron R, Wright P, Newman F, Makhene M, Thompson J, Smorodin R, Wilson M, Anderson E, Clements ML, Murphy BR. A live human parainfluenza type 3 virus vaccine is attenuated and immunogenic in health infants and children. J Infect Dis 1995; 172:1445–1450.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maassab, H.F. (1999). Principle of cold-adaptation in the derivation of live attenuated respiratory virus vaccines. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics