Skip to main content

Genetic Transformation of Catharanthus roseus (Periwinkle)

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 45))

Abstract

Catharanthus roseus (L.) G. Don (= Vinca rosea L.), the Madagascar periwinkle, is a pantropical erect subshrub, belonging to the family Apocynaceae. The plant accumulates more than 100 indole alkaloids, mainly the monomeric alkaloids ajmalicine, serpentine, vindoline, and catharanthine. Ajmalicine is an antihypertensive drug used in the treatment of circulatory diseases. Vindoline and catharanthine are the precursors of dimeric alkaloids, such as vinblastine and vincristine, the importance of which in the treatment of acute leukemia was established in the 1960s (Van Tellingen et al. 1992). Indeed, these two alkaloids were the first plant products to be approved by the FDA for cancer treatment (Noble 1990). They accumulate in aerial parts of the plant but only in very low amounts; thus they are very costly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainley WM, McNeil KJ, Hill JW, Lingle WL, Simpson RB, Brenner ML, Nagao RT, Key JL (1993) Regulatable endogenous production of cytokinins up to “toxic” levels in transgenic plants and plant tissues. Plant Mol Biol 22:113–123

    Article  Google Scholar 

  • Beinsberger SE, Valcke RL, Deblaere RY, Clijsters HM, De Greef JA, Van Onckelen HA (1991) Effects of the introduction of Agrobacterium tumefaciens T-DNA ipt-gene in Nicotiana tabacum L. cv. Petit Havana SR1 plant cells. Plant Cell Physiol 32:489–496

    CAS  Google Scholar 

  • Bhadra R, Vani S, Shanks JV (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41:581–592

    Article  PubMed  CAS  Google Scholar 

  • Binns AN, Labriola J, Black RC (1987) Initiation of auxin autonomy in Nicotiana glutinosa cells by the cytokinin-biosynthesis gene from Agrobacterium tumefaciens. Planta 171:539–548

    Article  CAS  Google Scholar 

  • Boder GB, Gorman N, Johnson JS, Simpson PJ (1964) Tissue culture studies of Catharanthus roseus crown gall. Lloydia 27:328–333

    CAS  Google Scholar 

  • Braun AC (1943) Studies on tumor inception in the crown-gall disease. An J Bot 30:674–677

    Article  Google Scholar 

  • Ciau-Uitz R, Miranda-Ham ML, Coello-Coello J, Chi B, Pacheco M, Loyola-Vargas VM (1994) Indole alkaloid production by transformed and non-transformed root. In Vitro Cell Dev Biol 30P:84–88

    CAS  Google Scholar 

  • Dagnino D, Schripsema J, Peltenburg A, Verpoorte R (1993) Capillary gas chromatographic analysis of indole alkaloids: investigation of the indole alkaloids present in Tabernaemontana divaricata cell suspension cultures. Phytochemistry 32:325–330

    Article  CAS  Google Scholar 

  • Dean C, Elzen P, Tamaki S, Duinsmuir P, Bedbrook J (1985) Differential expression of the eight genes of the Petunia ribulose bisphosphate carboxylase small subunit multigene family. EMBO J 5:3055–3061

    Google Scholar 

  • Décendit A, Liu D, Ouelhazi L, Doireau P, Mérillon JM, Rideau M (1992) Cytokinin-enhanced accumulation of indole alkaloids in Catharanthus roseus cell cultures: the factors affecting the cytokinin response. Plant Cell Rep 11:400–403

    Article  Google Scholar 

  • Eilert U, De Luca V, Kurtz WGW, Constabel F (1987) Alkaloid formation by habituated and tumorous cell suspension cultures of Catharanthus roseus. Plant Cell Rep 6:271–274

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Ganapathi G, Kargi F (1990) Recent advances in indole alkaloid production by Catharanthus roseus (periwinkle). J Exp Bot 41:259–267

    Article  CAS  Google Scholar 

  • Gamier F, Label P, Hallard D, Chénieux JC, Rideau M, Hamdi S (1996a) Transgenic periwinkle tissues overproducing cytokinins do not accumulate enhanced levels of indole alkaloids. Plant Cell Tissue Organ Cult 45:223–230

    Article  Google Scholar 

  • Gamier F, Carpin S, Label P, Crèche J, Rideau M, Hamdi S (1996b) Effect of cytokinin on alkaloid accumulation in periwinkle callus cultures transformed with a light-inducible ipt gene. Plant Sci 120:47–55

    Article  Google Scholar 

  • Goddijn OJM, Pennings EJM, Van der Helm P, Schilperoort RA, Verpoorte R, Hoge JHC (1995) Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown-gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloids. Transgen Res 4:315–323

    Article  CAS  Google Scholar 

  • Graham DE (1978) The isolation of high molecular weight DNA from whole organism or large tissue masses. Anal Biochem 85:609–613

    Article  PubMed  CAS  Google Scholar 

  • Hamdi S, Crèche J, Gamier F, Mars M, Décendit A, Gaspar T, Rideau M (1995) Cytokinin involvement in the control of coumarin accumulation in Nicotiana tabacum. Investigations with normal and transformed tissues carrying the isopentenyltransferase gene. Plant Physiol Biochem 33:283–288

    CAS  Google Scholar 

  • Hasezawa S, Nagata T, Syono (1981) Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts. Mol Gen Genet 182:206–210

    Article  Google Scholar 

  • Islas I, Loyola-Vargas VM, Miranda-Ham ML (1994) Tryptophan decarboxylase activity in transformed roots from Catharanthus roseus and its relationship to tryptamine, ajmalicine, and catharanthine accumulation during the culture cycle. In Vitro Cell Dev Biol 30P:81–83

    CAS  Google Scholar 

  • Jung KH, Kwak SS, Choi CY, Liu JR (1995) An interchangeable system of hairy root and cell suspension cultures of Catharanthus for indole alkaloid production. Plant Cell Rep 15:51–54

    Article  CAS  Google Scholar 

  • Kodja H, Liu D, Mérillon JM, Andreu F, Rideau M, Chénieux JC (1989) Stimulation of indole alkaloid accumulation in suspension cell cultures of Catharanthus roseus (G Don) by cytokinins. CR Acad Sci Paris 309 (III):453–458

    CAS  Google Scholar 

  • Kurz WGW, Constabel F (1979) Plant cell cultures, a potential source of pharmaceuticals. Adv Appl Microbiol 25:209–240

    Article  PubMed  CAS  Google Scholar 

  • Lenz CB, Hodges TK, Matthysse AG (1979) Uptake of potassium ions by normal and crown gall-tumor cells of Vinca rosea grown in tissue culture. Planta 146:113–117

    Article  Google Scholar 

  • Li Y, Shi X, Strabala TJ, Hagen G, Guilfoyle TJ (1994) Transgenic tobacco plants that overproduce cytokinins show increased tolerance to exogenous auxin and auxin transport inhibitors. Plant Sci 100:9–14

    Article  CAS  Google Scholar 

  • Lynn DG, Chen RH, Manning KS, Wood HN (1987) The structural characterization of endogenous factors from Vinca rosea crown-gall tumors that promote cell division of tobacco cells. Proc Natl Acad Sci USA 84:615–619

    Article  PubMed  CAS  Google Scholar 

  • Maldiney R, Leroux B, Sabbagh I, Sotta B, Sossountzov L, Miginiac E (1986) A biotin-avidin based enzyme immunoassay to quantify three phytohormones: auxin, abscissic acid and zeatinriboside. J Immunol Methods 90:151–158

    Article  CAS  Google Scholar 

  • Manasse RJ, Lipetz J (1971) A simplified method for isolating bacteria-free crown-gall tissue from Vinca rosea. Can J Bot 49:1255–1257

    Article  Google Scholar 

  • McGaw BA, Horgan R (1983) Cytokinin oxidase from Zea mays kernels and Vinca rosea crown gall tissue. Planta 159:30–37

    Article  CAS  Google Scholar 

  • Mérillon JM, Ouelhazi L, Doireau P, Chénieux JC, Rideau M (1989) Metabolic changes and alkaloid production in habituated and non-habituated cells of Catharanthus roseus grown in hormone-free medium. Comparing hormone-deprived non-habituated cells with habituated cells. J Plant Physiol 134:54–60

    Article  Google Scholar 

  • Miller CO (1974) Ribosyl-trans-zeatin, a major cytokinin produced by crown-gall tumor tissue. Proc Natl Acad Sci USA 71:334–338

    Article  PubMed  CAS  Google Scholar 

  • Moreno PRH, Van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey II. Updating from 1988 to 1993. Plant Cell Tissue Organ Cult 42:1–25

    Article  Google Scholar 

  • Noble RL (1990) The discovery of the Vinca alkaloids-chemotherapeutic agents against cancer. Biochem Cell Biol 68:1344–1351

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Hasezawa S, Syono K, Nagata T (1985) Further evidence for the transformation of Vinca rosea protoplasts by Agrobacterium tumefaciens spheroplasts. Plant Cell Rep 4:133–136

    Article  CAS  Google Scholar 

  • O’Keefe BR, Mahady GB, Gills JJ, Beecher CWW (1997) Stable vindoline production in transformed cell cultures of Catharanthus roseus. J Nat Prod 60:261–264

    Article  Google Scholar 

  • Palni LMS, Horgan R (1983) Cytokinins in transfer RNA of normal and crown-gall tissue of Vinca rosea. Planta 159:178–181

    Article  CAS  Google Scholar 

  • Palni LMS, Horgan R, Darrall NM, Stuchbury T, Wareing PF (1983) Cytokinin biosynthesis in crown-gall tissues of Vinca rosea. The significance of nucleotides. Planta 159:50–59

    Article  CAS  Google Scholar 

  • Schwartzenberg von K, Doumas P, Jouanin L, Pilate G (1994) Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14:27–35

    Article  Google Scholar 

  • Sim SS, Chang HN, Liu JR, Jung KH (1994) Production and secretion of indole alkaloids in hairy-root cultures of Catharanthus roseus: effects of in situ adsorption, fungal elicitation and permeabilization. J Ferm Bioeng 78:229–234

    Article  CAS  Google Scholar 

  • Smart CM, Scofield SR, Bevan MW, Dyer TA (1991) Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3:647–656

    PubMed  CAS  Google Scholar 

  • Smigocki AC (1991) Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol 16:105–115

    Article  PubMed  CAS  Google Scholar 

  • Smigocki AC, Owens LD (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiol 91:808–811

    Article  PubMed  CAS  Google Scholar 

  • Sotta B, Pilate G, Pelese F, Sabbagh I, Bonnet M, Maldiney R (1987) An avidin biotin solid phase ELISA for fentomole isopentenyladenine and isopentenyladenosine measurements in HPLC purified plant extracts. Plant Physiol 84:571–573

    Article  PubMed  CAS  Google Scholar 

  • Stuchbury T, Palni LMS, Horgan R, Wareing PF (1979) The biosynthesis of cytokinins in crown-gall tissue of Vinca rosea. Planta 147:97–102

    Article  CAS  Google Scholar 

  • Theis TN, Riker AJ, Allen ON (1950) The destruction of crown-gall bacteria in periwinkle by high temperature with high humidity. Am J Bot 37:792–801

    Article  Google Scholar 

  • Thomas JC, Smigocki AC, Bohnert HJ (1995) Light-induced expression of ipt from Agrobacterium tumefaciens results in cytokinin accumulation and osmotic stress symptoms in transgenic tobacco. Plant Mol Biol 27:225–235

    Article  PubMed  CAS  Google Scholar 

  • Toivonen L, Ojala M, Kauppinen V (1991) Studies on the optimization of growth and indole alkaloid production by hairy-root cultures of Catharanthus roseus. Biotechnol Bioeng 37:673–680

    Article  PubMed  CAS  Google Scholar 

  • Van der Fits L, Memelink J (1997) Comparison of the activities of CAMV35S and FMV34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol Biol 33:943–946

    Article  PubMed  Google Scholar 

  • Van der Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tissue Organ Cult 18:231–280

    Article  Google Scholar 

  • Van Tellingen O, Sips JHM, Beijnen JH, Bult A, Nooijen WJ (1992) Pharmacology, bio-analysis and pharmacokinetics in the Vinca alkaloids and semi-synthetics derivatives (review). Anticancer Res 12:1699–1716

    PubMed  Google Scholar 

  • Vasquez-Flota F, Moreno-Valenzuela O, Miranda-Ham ML, Coello-Coello J, Loyola-Vargas VM (1994) Catharanthine and ajmalicine synthesis in Catharanthus roseus hairy root cultures. Medium optimization and elicitation. Plant Cell Tissue Organ Cult 38:273–279

    Article  Google Scholar 

  • White PR (1945) Metastatic (graft) tumors of bacteria-free crown-galls on Vinca rosea. Am J Bot 32:237–241

    Article  Google Scholar 

  • Wood HN, Braun AC (1965) Studies on the net uptake of solutes by normal and crown-gall tumors cells. Proc Natl Acad Sci USA 54:1532–1538

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garnier, F., Hamdi, S., Label, P., Rideau, M. (1999). Genetic Transformation of Catharanthus roseus (Periwinkle). In: Bajaj, Y.P.S. (eds) Transgenic Medicinal Plants. Biotechnology in Agriculture and Forestry, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58439-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58439-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63595-3

  • Online ISBN: 978-3-642-58439-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics