Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

In treatment planning three aspects can be considered in general: tumor localization, treatment strategy, and treatment simulation. In tumor localization the exact location of the tumor is defined in relation to critical organs and patient coordinates. All information about available equipment and equipment behavior in relation to tumor location defines the treatment strategy. Finally, the complete treatment has to be simulated on the planning computer; furthermore, when using radiotherapy a treatment simulator is often employed, and when using hyperthermia “dry runs” with the actual heating equipment are sometimes conducted to complete the simulation procedure (Myerson et al. 1991). In radiotherapy, patient treatment position verification using the laser alignment system, the light field, and the optical distance indicator in relation to skin markers and megavolt imaging (Meertens et al. 1990; Visser et al. 1990) completes the treatment planning and guarantees an overall accuracy of about 5% (Brahme et al. 1988). In hyperthermia, because of the influence of physiology where 80%–90% of all heat transfer is directly related to blood flow (Lagendijk et al. 1988), it is impossible to predict the final temperature distribution with reasonable accuracy. It is an absolute necessity to have a feedback system during the actual treatment. Roemer and Cetas (1984) called this concurrent dosimetry; it entails the use of (invasive) thermometry and E-field probes to measure the temperature, the absorbed power (SAR) distributions, tissue cooling rates (Roemer 1990; De Leeuw et al. 1993), and effective thermal conductivities (Crezee and Lagendijk 1990). After treatment all these treatment data can be used to optimize the treatment planning computations. Roemer and Cetas (1984) called this retrospective thermal dosimetry, i.e., the use of all treatment data to calculate the final temperature/thermal dose distribution given. However, in must be stated that, except for simple temperature control feedback, no clinical (treatment planning) systems have been described in the literature which use these concurrent and retrospective thermal dosimetry aspects systematically to optimize treatment. As a first step, in vivo SAR measurements for optimizing regional RF hyperthermia are entering clinical use (De Leeuw et al. 1993; Wust et al. 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anscher MS, Samulski TV, Leopold KA, Oleson JR (1992) Phase I/II study of external radio frequency phased array hyperthermia and external beam radiotherapy in the treatment of prostate cancer: technique and results of intraprostatic temperature measurements. Int J Radiat Oncol Biol Phys 24: 489–495

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF, Fearnot NE, Marchosky JA, Moran CJ, Jones JT, Plantenga TD (1990) Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy. IEEE Trans Biomed Eng 37: 662–672

    Article  PubMed  CAS  Google Scholar 

  • Bakker CJG, Moerland MA, Bhagwandien R, Beersma R (1992) Analysis of machine-dependent and objectinduced geometric distortion in 2DFT MR imaging. Magn Reson Imaging 10: 597–608

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yosef R, Sullivan DM, Kapp DS (1993) Peripheral neuropathy and myonecrosis following hyperthermia and radiation therapy for recurrent prostatic cancer: correlation of damage with predicted SAR pattern. Int J Hyperthermia 8: 173–185

    Article  Google Scholar 

  • Bhagwandien R., van Ee R., Beersma R., Bakker CJG, Moerland MA, Lagendijk JJW (1992) Numerical analysis of the magnetic field for arbitrary magnetic susceptibility distributions in 2D. Magn Reson Imaging 10: 299–313

    Article  PubMed  CAS  Google Scholar 

  • Billard BE, Hynynen K, Roemer RB (1990) Effect of physical parameters on high temperature ultrasound hyperthermia. Ultrasound Med Biol 16: 409–420

    Article  PubMed  CAS  Google Scholar 

  • Borelli J, Thompson LL, Cain CA, Dewey WC (1990) Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5°C to 57.0°C. Int J Radiat Oncol Biol Phys 19: 389–399

    Article  Google Scholar 

  • Brahme A, Chavaudra J, Landberg T et al. (1988) Accuracy requirements and quality assurance of external beam radiotherapy with photons and electrons. Acta Oncol 27: Suppl. 1

    Google Scholar 

  • Brezovich IA, Atkinson WJ (1984) Temperature distributions in tumor models heated by self-regulating nickelcopper alloy thermoseeds. Med Phys 11: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Buhle EL Jr (1993) Use of AVS in radiotherapy treatment planning. AVS Network News 2: 46–48

    Google Scholar 

  • Chato JC (1980) Heat transfer to blood vessels. J Biomech Eng 102: 110–118

    Article  PubMed  CAS  Google Scholar 

  • Chen MM, Holmes KR (1980) Microvascular contributions in tissue heat transfer. Ann NY Acad Sci 335: 137–151

    Article  PubMed  CAS  Google Scholar 

  • COMAC BME/ESHO Task Group Report (1992) Treatment planning and modelling in hyperthermia (Task Group committee chairman: Lagendijk JJW). Tor Vergata Medical Physics Monograph Series

    Google Scholar 

  • Cosset JM (1990) Interstitial hyperthermia. In: Goutherie M (ed) Interstitial, endocavitary and perfusional hyperthermia. Springer, Berlin Heidelberg New York, pp 1–41

    Chapter  Google Scholar 

  • Crezee J, Lagendijk JJW (1990) Measurement of temperature profiles around large artificial vessels in perfused tissue. Phys Med Biol 35: 905–923

    Article  PubMed  CAS  Google Scholar 

  • Crezee J, Lagendijk JJW (1992) Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol 37: 1321–1337

    Article  PubMed  CAS  Google Scholar 

  • De Leeuw AAC, Mooibroek J, Lagendijk JJW (1991) SAR-steering by patient positioning in the “Coaxial TEM” system: phanton investigation. Int J Hyperthermia 7: 605–611

    Article  PubMed  Google Scholar 

  • De Leeuw AAC, Crezee H, Lagendijk JJW (1993) Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9: 685–697

    Article  PubMed  Google Scholar 

  • Dewhirst MW (1992) Thermal dosimetry. In: Gerner EG, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, pp 39–43

    Google Scholar 

  • Dorr LN, Hynynen K (1992) The effects of tissue heterogeneities and large blood vessels on the thermal exposure induced by short high-power ultrasound pulses. Int J Hyperthermia 8: 45–60

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin CL, Souza SP, Pele NJ (1993) Phase-sensitive flow imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) Magnetic resonance angiography. Mosby, St. Louis, pp 173–188

    Google Scholar 

  • Ebbini ES, Cain CA (1991) Optimization of the intensity gain of multiple-focus phased-array heating pattern. Int J Hyperthermia 7: 953–973

    Article  PubMed  CAS  Google Scholar 

  • Feldmann HJ, Molls M, Heinemann H-G, Romanowski R, Stuschke M, Sack H (1993) Thermoradiotherapy in locally advanced deep seated tumours-thermal parameters and treatment results. Radiother Oncol 26: 38–44

    Article  PubMed  CAS  Google Scholar 

  • Firmin DN, Dumoulin CL, Mohiaddin RH (1993) Quantitative flow imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) Magnetic resonance angiography. Mosby, St. Louis, pp 187–219

    Google Scholar 

  • Goffinet DR, Prionas SD, Kapp DS et al. (1990) Interstitial 192 Ir flexible catheter radiofrequency hyperthermia treatments of head and neck and recurrent pelvic carcinomas. Int J Radiat Oncol Biol Phys 18: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Guy AW (1971) Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans Biomed Eng 31:115–119

    Google Scholar 

  • Hagmann MJ, Levin RL (1986) Aberrant heating: a problem in regional hyperthermia. IEEE Trans Biomed Eng 33: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Hand JW, Lagendijk JJW, Andersen, JB, Bolomey JC (1989) Quality assurance quidelines for ESHO protocols. Int J Hyperthermia 5: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Hornsleth SN (1992) The finite difference time domain method and its application to hyperthermia simulations. In: Gerner EG, Cetas TC (eds) Hyperthermic oncology, vol 2. Arizona Board of Regents, pp 271–273

    Google Scholar 

  • Hunt JW, Lalonde R, Ginsberg H, Urchuk S, Worthington A (1991) Rapid heating: critical theoretical assessment of thermal gradients found in hyperthermia treatments. Int J Hyperthermia 7: 703–718

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K (1990) Biophysics and technology of ultrasound hyperthermia. In: Gautherie M (ed) Methods of external hyperthermic heating. Springer, Berlin Heidelberg New York, pp 61–115

    Chapter  Google Scholar 

  • Hynynen K, Lulu BA (1990) State of art in medicine: hyperthermia in cancer treatment. Invest Radiol 25: 824–834

    Article  PubMed  CAS  Google Scholar 

  • James BJ, Sullivan DM (1992) Creation of three-dimensional patient models for hyperthermia treatment planning. IEEE Trans Biomed Eng 39: 238–242

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW (1982) The influence of blood flow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol 27: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Hofman P, Schipper J (1988) Perfusion analyses in advanced breast carcinoma during hyperthermia. Int J Hyperthermia 4: 479–495

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Crezee J, Mooibroek J (1992) Progress in thermal modelling development. In: Gerner EG, Cetas TC (eds) Hyperthermic Oncology 1992, vol 2. Arizona Board of Regents, pp 257–260

    Google Scholar 

  • Lagendijk JJW, Hand JW, Crezee J (1994) Dose uniformity in scanned focused ultrasound hypethermia. Int J Hyperthermia 10/6: 775–784

    Article  Google Scholar 

  • Lagendijk JJW, Visser AG, Kaatee RSJP et al. (1995) The multi-electrode current source interstitial hyperthermia method. Activity Special Report 6: 83–90

    Google Scholar 

  • Le Bihan D, Turner R (1993) Diffusion and perfusion nuclear magnetic resonance imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) Magnetic resonance angiography. Mosby, St. Louis, pp 323–342

    Google Scholar 

  • Leopold KA, Dewhirst M, Samulski T et al. (1992) Relationships among tumor temperature treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas. Int J Radiat Oncol Biol Phys 22: 989–998

    Article  PubMed  CAS  Google Scholar 

  • Lizzi F, Ostromogilski M, Dumke A, Lunzer B, Driller J, Loleman D (1988) A computer imaging and graphics system for planning ultrasound therapy in the eye. J Ultrasound in Medicine 7(Suppl): 556

    Google Scholar 

  • McGough RJ, Ebbini ES, Cain CA (1992) Optimization of apertures and intensity patterns for hyperthermia with ultrasound pased array systems. In: Gerner EG, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, pp 205–209

    Google Scholar 

  • Meertens H, Bijhold J, Stackee J (1990) A method for the measurement of field placement errors in digital portal imaging. Phys Med Biol 35: 299–323

    Article  PubMed  CAS  Google Scholar 

  • Mooibroek J, Lagendijk JJW (1991) A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three dimensional inhomogeneous tissues. IEEE Trans Biomed Eng 38: 490–501

    Article  PubMed  CAS  Google Scholar 

  • Mooibroek J, De Leeuw AAC, Lagendijk JJW (1993) Theoretical and experimental investigation of 3-D SAR distribution in elliptical phantoms irradiated by the “Coaxial TEM” applicator. Proc 2nd Int Sc Meeting: Microwaves in Medicine, Rome, pp 105–108

    Google Scholar 

  • Myerson RJ, Leybovich L, Emami B, Grigsby PW, Straube W, Von Gerichten D (1991) Phantom studies and preliminary clinical experience with the BSD 2000. Int Hyperthermia 7: 937–951

    Article  CAS  Google Scholar 

  • Paulsen KD (1990) Calculation of power deposition patterns in hyperthermia. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Clinical thermology, subseries thermotherapy. Springer, Berlin Heidelberg New York, pp 57–117

    Google Scholar 

  • Paulsen KD, Ross MP (1990) Comparison of numerical calculations with phantom experiments and clinical measurements. Int J Hyperthermia 6: 333–349

    Article  PubMed  CAS  Google Scholar 

  • Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) (1993) Magnetic resonance angiography, Mosby, St. Louis

    Google Scholar 

  • Roberts DW, Coughlin CT, Wong TZ, Fratkin JD, Douple EB, Strohbehn JW (1986) Interstitial hyperthermia and iridium brachytherapy in treatment of malignant glioma. J Neurosurg 64: 581–587

    Article  PubMed  CAS  Google Scholar 

  • Roemer RB (1990) The local tissue cooling coefficient: a unified approach to thermal washout and steady-state “perfusion” calculations. Int J Hyperthermia 6: 421–430

    Article  PubMed  CAS  Google Scholar 

  • Roemer RB, Cetas TC (1984) Applications of bioheat transfer simulations in hyperthermia. Cancer Res 44: 4788s–4798s

    PubMed  CAS  Google Scholar 

  • Roemer RB, Fletcher AM, Cetas TC (1985) Obtaining local SAR and blood perfusion data from temperature measurements: steady-state and transient techniques compared. Int J Radiat Oncol Biol Phys 11: 1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Romanowski R, Schott C, Feldmann HJ, Molls M (1991) Numeric description of thermometry quality in regional hyperthermia: the S-quotient. Strahlenther Onkol 167: 337

    Google Scholar 

  • Salcman M, Samaras GM (1983) Interstitial hyperthermia for brain tumors. J Neurooncol 1: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Schepps JL, Foster KR (1980) The UHF and microwave dielectric properties of normal and tumor tissues: variation in dielectric properties with tissue water content. Phys Med Biol 25, pp 1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Schreier K, Budihna M, Lesnicar H et al. (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–444

    Article  PubMed  CAS  Google Scholar 

  • Silberman AW, Rand RW, Storm FK, Drury B, Benz ML, Morton DL (1985) Phase I trial of thermochemotherapy for brain malignancy. Cancer 56: 48–56

    Article  PubMed  CAS  Google Scholar 

  • Smets C (1990) A knowledge-based system for the automatic interpretation of blood vessels on angiograms. PhD Thesis. Katholieke Universiteit Leuven

    Google Scholar 

  • Sneed PK, Gutin PH, Stauffer PR et al. (1992) Thermor-adiotherapy of recurrent malignant brain tumors. Int J Radiat Oncol Biol Phys 23: 853–861

    Article  PubMed  CAS  Google Scholar 

  • Sowinski MJ, van den Berg PM (1990) A three-dimensional iterative scheme for an electromagnetic capacitive applicator. IEEE Trans Biomed Eng 37: 975–986

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW (1983) Temperature distributions from interstitial rf electrode hyperthermia systems: theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW, Trembly BS, Douple EB (1982) Blood flow effects on the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE Trans Biomed Eng 29: 649–661

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW, Curtis EH, Paulsen KD, Yuan X, Lynch DR (1989) Optimization of the absorbed power distribution for an annular phased array hyperthermia system. Int J Radiat Oncol Biol Phys 16: 589–599

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DM, Ben-Yosef R, Kapp DS (1993) Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary. Int J Hyperthermia 9: 627–643

    Article  PubMed  CAS  Google Scholar 

  • Sun Y (1989) Automated identification of vessel contours in coranary arteriograms by an adaptive tracking algorithm. IEEE Trans Med Imaging 8: 78–88

    Article  PubMed  CAS  Google Scholar 

  • Torell LM, Nilsson SK (1978) Temperature gradients in low-flow vessels. Phys Med Biol 23: 106–117

    Article  PubMed  CAS  Google Scholar 

  • Van der Koijk JF, Bakker CJG, de Bree J et al. (1993) Development of an interstitial hyperthermia treatment planning system. Proc 2nd Int Sc Meeting: Microwaves in Medicine, Rome, pp 109–112

    Google Scholar 

  • Van der Meulen D (1991) Methods for registration, interpolation of three dimensional medical image data for use in 3D display, 3D modelling and therapy planning. PhD Thesis, Katholieke Universiteit Leuven

    Google Scholar 

  • Van Es CA, Wijrdeman HK, De Leeuw AAC, Lagendijk JJW, Battermann JJ (1992) Pilot study. Regional hyperthermia with the “Coaxial TEM” system in advanced pelvic disease. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Summary papers. Arizona Board of Regents, p 415

    Google Scholar 

  • Visser AG, Huizenga H, Althof VG, Swanenburg BN (1990) Performance of a prototype fluoroscopic radiotherapy imaging system. Int J Radiat Oncol Biol Phys 18: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Nadobny J, Felix R, Deuflhard P, Louis A, John W (1991) Strategies for optimized application of annularphased-array systems in clinical hyperthermia. Int J Hyperthermia 7: 157–173

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Nadobny J, Seebass M, Fahling H, Felix R (1992) Potential of radiofrequency hyperthermia: planning, optimization, technological development. In: Gerner EG, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, pp 65–72

    Google Scholar 

  • Wust P, Nadobny J, Seebass M, Dohlus M, John W, Felix R (1993) 3D computation of E fields by the volume surface integral equation (VSIE) method in comparison with the finite integration theory (FIT) method. IEEE Trans Biomed Eng vol. 40(8): 745–759

    Article  PubMed  CAS  Google Scholar 

  • Zwamborn APM, van den Berg PM (1992) The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems. IEEE Trans Microwave Theory Tech 40: 1757–1766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lagendijk, J.J.W., Crezee, J., Mooibroek, J. (1995). Principles of Treatment Planning. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics