Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

An aspect of clinical hyperthermia which is still in the midst of its developmental stage is the determination of three-dimensional (3D) temperature distributions for treatment planning purposes (COMAC BME/ESHO 1990, 1992). As long as noninvasive 3D temperature measurement techniques cannot be applied routinely in clinics, we must rely for temperature information on thermal probes inserted in tumor mass and healthy tissues. However, these invasive techniques cannot provide sufficient spatial information on the actual 3D temperature field and therefore thermal models are the method of choice to bridge the gap (Clegg et al. 1985; Clegg and Roemer 1989,1992; Liauh et al. 1991; see also Chap. 20).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson GT, Valvano JW, Santos RR (1992) Self-heated thermistor measurements of perfusion. IEEE Trans Biomed Eng 39: 877–885

    Article  PubMed  CAS  Google Scholar 

  • Baish JW, Ayyaswamy PS, Foster KR (1986a) Small-scale temperature fluctuations in perfused tissue during local hyperthermia. J Biomech Eng 108: 246–250

    Article  PubMed  CAS  Google Scholar 

  • Baish JW, Ayyaswamy PS, Foster KR (1986b) Heat transport mechanisms in vascular tissues: a model comparison. J Biomech Eng 108: 324–331

    Article  PubMed  CAS  Google Scholar 

  • Bos CK, Crezee J, Mooibroek J, Lagendijk JJW (1991) A perfusion technique for tongues to be used in bioheat transfer studies. Phys Med Biol 36: 843–846

    Article  PubMed  CAS  Google Scholar 

  • Charny CK, Weinbaum S, Levin RL (1989) An evaluation of the Weinbaum-Jiji bioheat transfer model for simulations of hyperthermia. Adv Bioeng ASME WAM 126: 1–10

    Google Scholar 

  • Charny CK, Weinbaum S, Levin RL (1990) An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions. Biomech Eng-T ASHE 112: 80–87

    Article  CAS  Google Scholar 

  • Chato JC (1980) Heat transfer to blood vessels. J Biomech Eng 102: 110–118

    Article  PubMed  CAS  Google Scholar 

  • Chato JC (1990) Fundamentals of bioheat transfer. In: Crautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 1–56

    Chapter  Google Scholar 

  • Chen MM, Holmes KR (1980) Microvascular contributions in tissue heat transfer. Ann NY Acad Sci 335: 137–151

    Article  PubMed  CAS  Google Scholar 

  • Chen ZP, Roemer RB (1992) The effects of large blood vessels on temperature distributions during simulated hyperthermia. J Biomech Eng 114: 473–481

    Article  PubMed  CAS  Google Scholar 

  • Clegg ST, Roemer RB (1989) Estimation of three-dimensional temperature fields from noisy data during hyperthermia. Int J Hyperthermia 5: 967–989

    Article  Google Scholar 

  • Clegg ST, Roemer RB (1993) Reconstruction of experimental hyperthermia temperature distributions: application of state and parameter estimation. Trans ASME 115: 380–388

    Article  CAS  Google Scholar 

  • Clegg ST, Roemer RB, Cetas TC (1985) Estimation of complete temperature fields from measured transient temperatures. Int J Hyperthermia 1: 265–286

    Article  PubMed  CAS  Google Scholar 

  • COMAC-BME/ESHO (1990) Workshop on modelling and planning in hyperthermia (Lagonissi 1990). Conclusions, subgroup Thermal Modelling (by Lagendijk JJW). COMAC-BME Hyperthermia Bulletin 4: 47–49

    Google Scholar 

  • COMAC BME/ESHO Task Group Report (1992) Treatment planning and modelling in hyperthermia (Task Group committee chairman: Lagendijk JJW). Tor Vergata Medical Physics Monograph Series

    Google Scholar 

  • Crezee J (1993) Experimental verification of thermal models. PhD Thesis. Addix, Wijk bij Duurstede

    Google Scholar 

  • Crezee J, Lagendijk JJW (1990) Measurement of temperature profiles around large artificial vessels in perfused tissue. Phys Med Biol 35: 905–923

    Article  PubMed  CAS  Google Scholar 

  • Crezee, J, Lagendijk, JJW (1992) Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol 37: 1321–1337

    Article  PubMed  CAS  Google Scholar 

  • Crezee J, Mooibroek J, Bos CK, Lagendijk JJW (1991) Interstitial heating: experiments in artificially perfused bovine tongues. Phys Med Biol 36: 823–833

    Article  PubMed  CAS  Google Scholar 

  • Crezee J, Mooibroek J, Lagendijk JJW (1993) Thermal model verification in interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Berlin Heidelberg New York, pp 147–153

    Chapter  Google Scholar 

  • De Young DW, Kundrat MA, Cetas TC (1986) In vivo kidneys as preclinical thermal models for hyperthermia. Proc IEEE 9th Ann Conf Med Biol Soc (Boston: IEEE No. 87CH2513-0): 994–996

    Google Scholar 

  • Dumoulin CL, Souza SP, Pele NJ (1993) Phase-sensitive flow imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (èds) Magnetic resonance angiography. Mosby, St. Louis, pp 173–188

    Google Scholar 

  • Feldmann HJ, Molls M, Hoederath A, Krümpelmann S, Sack H (1992) Blood flow and steady state temperatures in deep-seated tumors and normal tissues. Int J Radiat Oncol Biol Phys 23: 1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC (1986) Textbook of medical physiology. Saunders, Philadelphia, pp 206–336

    Google Scholar 

  • Green HD (1950) Circulatory system: physical principles. In Medical Physics II, edited by O. Glasser (Chicago, Year Book Publishers), pp 228–251

    Google Scholar 

  • Holmes KR, Ryan W, Weinstein P, Chen MM (1984) A fixation technique for organs to be used as perfused tissue phantoms in bioheat transfer studies. In: Spiker RLS (ed) 1984 Advances in bioengineering. NY ASME WAM: 9–10

    Google Scholar 

  • Hynynen K, DeYoung D, Kundrat M, Moros E (1989) The effect of blood perfusion rate on the temperature distributions induced by multiple, scanned and focussed ultrasonic beams in dogs’ kidneys in vivo. Int J Hyperthermia 5: 485–498

    Article  PubMed  CAS  Google Scholar 

  • Jiji LM, Weinbaum S, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer II. Model formulation and solution. J Biomech Eng 106: 331–341

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW (1982) The influence of blood flow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol 27: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW (1984) A new theory to calculate temperature distributions in tissues, or why the “bioheat transfer“ equation does not work. In: overgaard J (ed) Hyperthermic oncology 1984, vol 1, Taylor&Francis, London, pp 507–510

    Google Scholar 

  • Lagendijk JJW (1987) Heat transfer in tissues. In: Field SB, Franconi S (eds) Physics and technology of hyperthermia. Martinus Nihjof, Amsterdom, pp 517–561

    Chapter  Google Scholar 

  • Lagendijk JJW (1990) Thermal models: principles and implementation. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor and Francis, London, pp 478–512

    Google Scholar 

  • Lagendijk JJW, Mooibroek J (1986) Hyperthermia treatment planning. Recent Results Cancer Res 101: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Schellekens M, Schipper J, Van der Linden PM (1984) A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment. Phys Med Biol 29: 495–507

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Hofman P, Schipper J (1988) Perfusion analyses in advanced breast carcinoma during hyperthermia. Int J Hyperthermia 4: 479–495

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Crezee J, Mooibroek J (1992) Progress in thermal modelling development. In: Gerner Eq, Cetas TC (eds) Hyperthermic Oncology 1992, vol 2. Arizona Board of Regents, Tucson, AZ, pp 257–260

    Google Scholar 

  • Lemons DE, Weinbaum S (1992) Heat transfer and local thermal control of the microcirculation. Adv Biol Heat Mass Transfer 231: 129–134

    Google Scholar 

  • Lemons DE, Chien S, Crawshaw LI, Weinbaum S, Jiji LM (1987) Significance of vessel size and type in vascular heat transfer. Am J Physiol 253: R128–R135

    PubMed  CAS  Google Scholar 

  • Liauh CT, Clegg ST, Roemer RB (1991) Estimating three-dimensional temperature fields during hyperthermia: studies of the optimal regularization parameter and time sampling period. Trans ASME 113: 230–238

    CAS  Google Scholar 

  • Mall F (1888) Die Blut-und Lymphwege im Dünndarm des hundes. Abhandlungen der Königlich Sächsische Gesellschaft der Wissenschaften, Mathematisch-Physischen Classe 14, pp 151–200

    Google Scholar 

  • Mitchell AR, Griffiths DF (1980) The finite difference method in partial differential equations. Wiley, New York, pp 89–91

    Google Scholar 

  • Mooibroek J (1992) In: COMAC BME/ESHO taskgroup report. Treatment planning and modelling in hyperthermia Task Group committee chairman: Lagendijk JJW). Tor Vergata Medical Physics Monograph Series, pp 89–99

    Google Scholar 

  • Mooibroek J, Lagendijk JJW (1991) A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three dimensional inhomogeneous tissues. IEEE Trans Biomed Eng 38: 490–501

    Article  PubMed  CAS  Google Scholar 

  • Mooibroek J, Crezee J, Lagendijk JJW (1993) Thermal modelling of vascular patterns and their impact on interstitial heating technology and temperature monitoring. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermo-radiotherapie. Springer, Berlin Heidelberg New York, pp 131–137

    Chapter  Google Scholar 

  • Moros EG, Dutton AW, Roemer RB, Burton M, Hynynen K (1993) Experimental evaluation of two simple thermal models using hyperthermia in muscle in vivo. Int J Hyperthermia 9: 581–598

    Article  PubMed  CAS  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood tempertures in the resting human forearm. J Appl Physiol 1: 93–122

    PubMed  CAS  Google Scholar 

  • Reinhold HS, van den Berg AP (1990) In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor and Francis, London, pp 77–107

    Google Scholar 

  • Roemer RB (1988) Heat transfer in hyperthermia treatments: basic principles and applications. In: Paliwal BR, Hetzel FW (eds) Biological, physical and clinical aspects of hyperthermia. American Institute of Physics, New York, pp 210–242

    Google Scholar 

  • Roemer RB (1990) Thermal dosimetry. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 119–214

    Chapter  Google Scholar 

  • Roemer RB, Moros EG, Hynynen K (1989) A comparison of bioheat transfer and effective conductivity equation predictions to experimental hyperthermia data. Adv Bioeng ASME WAM, HTD 126: 11–15.

    Google Scholar 

  • Torell LM, Nilsson SK (1978) Temperature gradients in low-flow vessels. Phys Med Biol 23: 106–117

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. Biomech Eng-T ASME 107: 131–139

    CAS  Google Scholar 

  • Weinbaum S, Jiji LM (1987) Discussion of papers by Wissler and Baish et al. concerning the Weinbaum-Jiji bioheat equation. J Biomech Eng-T ASME 109: 234–237

    Article  CAS  Google Scholar 

  • Weinbaum S, Lemons DE (1992) Heat transfer in living tissue: the search for a blood-tissue energy equation and the local thermal microvascular control mechanism. BMES Bull 16: 38–43

    Google Scholar 

  • Weinbaum S, Jiji LM, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Anatomical foundation and model conceptualization. J Biomech Eng-T ASME 106: 321–330

    Article  CAS  Google Scholar 

  • Weinbaum S, Jiji LM, Lemons DE (1992) The bleed off perfusion term in the Weinbaum-Jiji bioheat equation. J Biomech Eng-T ASME 114: 376–380

    Article  Google Scholar 

  • Wissler EH (1987a) Comments on the new bioheat transfer equation proposed by Weinbaum and Jiji. J Biomech Eng 109: 226–233

    Article  PubMed  CAS  Google Scholar 

  • Wissler EH (1987b) Comments on Weinbaum and Jiji’s discussion of their proposed bioheat equation. J Biomech Eng 109: 355–356

    Article  PubMed  CAS  Google Scholar 

  • Wulff W (1974) The energy conservation equation for living tissue. IEEE Trans Biomed Eng 21: 494–495

    Article  Google Scholar 

  • Wust P, Nadobny J, Felix R, Deuflhard P, Louis A, John W (1991) Strategies for optimized application of annular-phased-array systems in clinical hyperthermia. Int J Hyperthermiz 7: 157–173

    Article  CAS  Google Scholar 

  • Zaerr J, Roemer RB, Hynynen K (1990) Computer-controlled dynamic phantom for ultrasound hyperthermia studies. IEEE Trans Biomed Eng 37: 1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Fessenden P (1993) Automation of temperature control for large-array microwave surface applicators. Int J Hyperthermia 9: 479–490

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Weinbaum S, Jiji LM (1990) Heat exchange between unequal countercurrent vessels asymmetrically embedded in a cylinder with surface convection. Int J Heat Mass Transfer 33: 2275–2284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mooibroek, J., Crezee, J., Lagendijk, J.J.W. (1995). Basics of Thermal Models. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics