Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 73))

Abstract

One of the most progressing subjects in present-day chemistry is the establishment of quantitative relationships between biological or pharmacological properties and molecular structure. This topic has become a solid subject matter, usually known as quantitative structure-activity relationships (QSAR). Since Hansch and Fujita [142] performed the pioneering studies on QSAR, the advances in this matter have not ceased. The predictive capabilities of the earliest models were substantially improved when 3D structural descriptors were introduced, providing a powerful alternative to the use of extra-thermodynamical parameters in QSAR studies [143]. In addition, the definition of different quantitative similarity measures between two molecules proved a great aid in order to a source of 3D QSAR parameters acting as molecular descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansch C, Fujita T (1964) ρ-σ-π Analysis. A method for correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  2. Martin YC (1978) Quantitative Drug Design. A Critical Introduction. Marcel Dekker, New York

    Google Scholar 

  3. Cramer III RD, Patterson DE, Bunce JD (1988) Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  4. Good AC, So S-S, Richards WG (1993) Structure-Activity Relationships from Molecular Similarity Matrices. J Med Chem 36:433–438

    Article  CAS  Google Scholar 

  5. Jain AN, Koile K, Chapman D (1994) Compass: Predicting Biological Activities from Molecular Surface Properties. Performance Comparisons on a Steroid Benchmark. J Med Chem 37:2315–2327

    Article  CAS  Google Scholar 

  6. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  7. Silverman BD, Platt DE (1996) Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem 39:2129–2140

    Article  CAS  Google Scholar 

  8. Wold S, Johansson E, Cocchi M. (1993) PLS-Partial Least-Squares Projections to Latent Structures. In: Kubinyi H (ed) 3D QSAR in Drug Design. ESCOM, Leiden, pp 523–550

    Google Scholar 

  9. Tetko IV, Luik AI, Poda GI (1993) Application of Neural Networks in Structure-Activity Relationships of a Small Number of Molecules. J Med Chem 36:811–814

    Article  CAS  Google Scholar 

  10. Ajay A (1993) A Unified Framework for Using Neural Networks to Build QSARs. J Med Chem 36:3565–3571

    Article  CAS  Google Scholar 

  11. Stuper AJ, Jurs C (1975) Classification of Psychotropic Drugsas Sedatives or Tranquilizers using Pattern Recognition Techniques. J Am Chem Soc 97:182–187

    Article  CAS  Google Scholar 

  12. Kowalski BR, Bender CF (1973) Pattern Recognition. II. Linear and Nonlinear Methods for Displaying Chemical Data. J Am Chem Soc 95:686–693

    Article  CAS  Google Scholar 

  13. McFarland JW, Gans DJ (1987) Cluster Significance Analysis contrasted with three other quantitative structure-activity relationship models. J Med Chem 30:46–49

    Article  CAS  Google Scholar 

  14. Moriguchi I, Hirono S, Liu Q, Nakagome I (1992) Fuzzy Adaptive Least Squares and its application to Structure-Activity Studies. Quant Struct-Act Relat 11:325–331

    Article  CAS  Google Scholar 

  15. Carbó R, Besalú E, Amat L, Fradera X (1995) Quantum molecular similarity measures (MQSM) as a natural way leading towards a theoretical foundation of quantitative structure-properties relationships (QSPR). J Math Chem 18:237–246

    Article  Google Scholar 

  16. Montogmery DC, Peck EA (1992) Introduction to linear regression analysis. Wiley, New York

    Google Scholar 

  17. Amat L, Carbó-Dorca R, Ponec R (1999) Simple linear QSAR models based on Quantum Similarity Measures. J Med Chem 42:5169–5180

    Article  CAS  Google Scholar 

  18. Zupan J, Gasteiger J (1993) Neural Networks for Chemists. VCH, Weinheim

    Google Scholar 

  19. Allen DM (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16:125–127

    Article  Google Scholar 

  20. Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: Van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, New York, Vol 2, pp 309–318

    Chapter  Google Scholar 

  21. Kier LB, Hall LH (1974) Molecular Connectivity and Drug Research. Academic Press, New York

    Google Scholar 

  22. Hall LH, Kier LB (1991) The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Poperty Modelling. In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry II. VCH, New York, pp 367–422

    Chapter  Google Scholar 

  23. Mihalic Z, Trinajstic N (1992) A Graph-Theoretical Approach to Structure-Property Relationships. J Chem Educ 69:701–712

    Article  CAS  Google Scholar 

  24. Cho SJ, Tropsha A (1995) Cross-Validated R2-Guided Region Selection for Comparative Molecular Field Analysis: A Simple Method to Achieve Consistent Results. J Med Chem 38:1060–1066

    Article  CAS  Google Scholar 

  25. Kroemer TR, Hecht P (1995) Replacement of Steric 6-12 Potential-Derived Interaction energies by Atom-Based Indicator Variables in CoMFA Leads to Models of Higher Consistency. J Comput-Aided Mol Design 9:205–212

    Article  CAS  Google Scholar 

  26. Klebe G, Abraham U (1993) On the prediction of Binding Properties of Drug Molecules by Comparative Molecular Field Analysis. J Med Chem 36:70–80

    Article  CAS  Google Scholar 

  27. Sulea T, Oprea TI, Muresan S, Chan SL (1997) A Different Method for Steric Field Evaluation in CoMFA Improves Model Robustness. J Chem Inf Comput Sci 37:1162–1170

    Article  CAS  Google Scholar 

  28. Folkers G, Merz A, Rognan D (1993) CoMFA: Scope and Limitations. In: Kubinyi H (ed) 3D QSAR in Drug Design. ESCOM, Leiden, pp 583–618

    Google Scholar 

  29. Cramer III RD, DePriest SA, Patterson A, Hecht P (1993) The Developing of Comparative Molecular Field Analysis. In: Kubinyi H (ed) 3D QSAR in Drug Design. ESCOM, Leiden, pp 443–485

    Google Scholar 

  30. Simon Z (1992) Comparative molecular field analysis. Critical comments. Rev Roum Chem 37:323–325

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbó-Dorca, R., Robert, D., Amat, L., Gironés, X., Besalú, E. (2000). Application of Quantum Similarity to QSAR. In: Molecular Quantum Similarity in QSAR and Drug Design. Lecture Notes in Chemistry, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57273-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57273-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67581-5

  • Online ISBN: 978-3-642-57273-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics