Skip to main content

Regulation of Neutrophil Activation in Acute Lung Injury and SIRS

  • Chapter
  • 126 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 31))

Abstract

The primary function of neutrophils is host defense but, paradoxically, unregulated activation of these phagocytes may result in tissue damage in conditions such as acute lung injury and the systemic inflammatory response syndrome (SIRS). Despite extensive research into the physiological and cellular basis of inflammatory injury and increasingly sophisticated intensive care, the morbidity and mortality of these syndromes remains distressingly high. The purpose of this chapter is to summarize recent developments in our understanding of the signaling pathways regulating leukocyte activation relevant to neutrophil-mediated tissue injury. Two main concepts will be explored: 1) that defective regulation of protein tyrosine phosphatases (PTPs) that function primarily in signal termination may predispose to uncontrolled neutrophil activation, and 2) that signals from adhesion receptors contribute to enhanced release of cytotoxic compounds by neutrophils during adhesion to endothelium, epithelium, or extracellular matrix proteins in the interstitium. This ‘adhesion-dependent activation’ of leukocytes can greatly potentiate the effects of soluble mediators on activation. Recent studies from our laboratory that illuminate these signahng pathways will be reviewed. It is hoped that the results of these studies will provide insights into the pathogenesis of lung injury and eventually lead to novel therapeutic strategies to prevent or ameliorate tissue injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuster DP, Kollef MH (1996) Acute respiratory distress syndrome. Dis Mon 42:270–326

    PubMed  CAS  Google Scholar 

  2. Montgomery BA, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult repiratory distress syndrome. Am Rev Respir Dis 132:485–489

    PubMed  CAS  Google Scholar 

  3. Bone RC (1994) Sepsis and its complications: the clinical problem. Grit Care Med 22: S8–S11

    CAS  Google Scholar 

  4. Donnelly SC, Haslett C (1992) Cellular mechanisms of acute lung injury: Implications for future treatment in the adult respiratory distress syndrome. Thorax 47:260–263

    PubMed  CAS  Google Scholar 

  5. Reynolds HY (1987) Lung inflammation: normal host defense or a complication of some diseases. Annu Rev Med 38:295–323

    PubMed  CAS  Google Scholar 

  6. Balk RA, Bone RC (1989) The septic syndrome. Definition and clinical impHcations. Crit Care Clin 5:1–8

    PubMed  CAS  Google Scholar 

  7. St. John RC, Dorinsky PM (1993) Immunologic therapy for ARDS, septic shock, and multiple organ failure. Chest 103:932–943

    PubMed  CAS  Google Scholar 

  8. Doerschuk CM, Allard MF, Martin BA, MacKenzie A, Autor AP, Hogg JC (1987) Marginated pool of neutrophils in rabbit lungs. J Appl Physiol 63:1806–1815

    PubMed  CAS  Google Scholar 

  9. Hogg JC, Doerschuk CM (1995) Leukocyte traffic in the lung. Annu Rev Physiol 57:97–114

    PubMed  CAS  Google Scholar 

  10. Downey GP, Worthen GS (1988) Neutrophil retention in model capillaries: deformability, geometry, and hydrodynamic forces. J Appl Physiol 65:1861–1871

    PubMed  CAS  Google Scholar 

  11. Worthen GS, Schwab BD, Elson EL, Downey GP (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 245:183–186

    PubMed  CAS  Google Scholar 

  12. Inano H, English D, Doerschuk CM (1992) Effect of zymosan-activated plasma on the deformability of rabbit polymorphonuclear leukocytes. J Appl Physiol 73:1370–1376

    PubMed  CAS  Google Scholar 

  13. Bevilacqua MP, Nelson RM, Mannori G, Cecconi O (1994) EndotheUal-leukocyte adhesion molecules in human disease. Annu Rev Med 45:361–378

    PubMed  CAS  Google Scholar 

  14. Doerschuk CM, Winn RK, Coxson HO, Harlan JM (1990) CD18-dependent and-independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol 144:2327–2333

    PubMed  CAS  Google Scholar 

  15. Rinaldo JE, Christman JW (1990) Mechanisms and mediators of the adult respiratory distress syndrome. Clin Chest Med 11:621–632

    PubMed  CAS  Google Scholar 

  16. Sha’afi R, Molski T (1988) Activation of the neutrophils. In: Becker EL (ed) Progress in Allergy, vol. 42. Karger, Basel, pp 1–64

    Google Scholar 

  17. Downey GP, Fukushima T, Fialkow L, Waddell TK (1995) Intracellular signaling in neutrophil priming and activation. Semin Cell Biol 6:345–356

    PubMed  CAS  Google Scholar 

  18. Gerard C, Gerard NP (1994) The pro-inflammatory seven-transmembrane segment receptors of the leukocyte. Curr Opin Immunol 6:140–145

    PubMed  CAS  Google Scholar 

  19. Huang KP (1990) The mechanism of protein kinase C activation. Trends Neuro Sci 12:425–431

    CAS  Google Scholar 

  20. Hamada F, Aoki M, Akiyama T, Toyoshima K (1993) Association of immunoglobulin G Fc receptor II with Src-like protein-tyrosine kinase Fgr in neutrophils. Proc Natl Acad Sci USA 90:6305–6309

    PubMed  CAS  Google Scholar 

  21. Greenberg S (1995) Signal transduction of phagocytosis. Trends Cell Biol 5:93–99

    PubMed  CAS  Google Scholar 

  22. Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839–1842

    PubMed  CAS  Google Scholar 

  23. Kieran MW, Zon LI (1996) Stress-and mitogen-activated signal transduction in hematopoietic cells. Curr Opin Hematol 3:27–34

    PubMed  CAS  Google Scholar 

  24. Nick JA, Avdi NJ, Young SK, et al (1997) Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and fMLP. J Clin Invest 99: 975–986

    PubMed  CAS  Google Scholar 

  25. Downey GP, Bufler JR, Tapper H, et al (1998) Importance of the MEK/MAP kinase pathway in neutrophil microbicidal responsiveness. J Immunol 160:434–443

    PubMed  CAS  Google Scholar 

  26. Krump E, Sanghera JS, Pelech SL, Furuya W, Grinstein S (1997) Chemotactic peptide N-formyl-met-leu-phe activation of p38 mitogen-activated protein kinase (MARK) and MAPK-activated protein kinase-2 in human neutrophils. J Biol Chem 272:937–944

    PubMed  CAS  Google Scholar 

  27. Frasch SC, Nick JA, Fadok VA, Bratton DL, Worthen GS, Henson PM (1998) p38 mitogen-activated protein kinase-dependent and-independent intracellular signal transduction pathways leading to apoptosis in human neutrophils. J Biol Chem 273:8389–8397

    PubMed  CAS  Google Scholar 

  28. Dusi S, Donini M, Delia Bianca V, Rossi F ( 1994) Tyrosine phosphorylation of phospholipase C-gamma2 is involved in the activation of phosphoinositide hydrolysis by Fc receptors in human neutrophils. Biochem Biophys Res Commun 201:1100–1108

    PubMed  CAS  Google Scholar 

  29. Greenberg S, Chang P, Silverstein SC (1993) Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J Exp Med 177:529–534

    PubMed  CAS  Google Scholar 

  30. Huang CLaramee G, Casnellie J (1988) Chemotactic factor induced tyrosine phosphorylation of membrane associated proteins in rabbit peritoneal neutrophils. Biochem Biophys Res Commun 151:794–801

    PubMed  CAS  Google Scholar 

  31. Gomez-Cambronero J, Huang C, Bonak V, Wang E, Casnellie J (1989) Tyrosine phosphorylation in human neutrophil. Biochem Biophys Res Commun 162:1478–1485

    PubMed  CAS  Google Scholar 

  32. Berkow RL, Dodson RW, Kraft AS (1989) Human neutrophils contain distinct cytosoUc and particulate tyrosine kinase activities: possible role in neutrophil activation. Biochim Biophys Acta 997:292–301

    PubMed  CAS  Google Scholar 

  33. McGregor PE, Agrawal DK, Edwards JD (1994) Attenuation of human leukocyte adherence to endothelial cell monolayers by tyrosine kinase inhibitors. Biochem Biophys Res Commun 198:359–365

    PubMed  CAS  Google Scholar 

  34. Gaudry M, Caon AC, Gilbert C, Lille S, Naccache PH (1992) Evidence for the involvement of tyrosine kinases in the locomotory responses of human neutrophils. J Leukocyte Biol 51: 103–108

    PubMed  CAS  Google Scholar 

  35. Kobayashi K, Takahashi K, Nagasawa S (1995) The role of tyrosine phosphorylation and Ca2+ accumulation in Fcgamma-receptor-mediated phagocytosis of human neutrophils. J Biochem (Tokyo) 117:1156–1161

    CAS  Google Scholar 

  36. Grinstein S, W Furuya (1991) Tyrosine phosphorylation and oxygen consumption induced by G proteins in neutrophils. Am J Physiol 260: C1019–C1027

    PubMed  CAS  Google Scholar 

  37. Kusunoki T, Higashi H, Hosoi S, et al (1992) Tyrosine phosphorylation and its possible role in superoxide production by human neutrophils stimulated with FMLP and IgG. Biochem Biophys Res Commun 183:789–796

    PubMed  CAS  Google Scholar 

  38. Ptasznik A, Prossnitz ER, Yoshikawa D, Smrcka A, Traynor-Kaplan AE, Bokoch GM (1996) A tyrosine kinase signaling pathway accounts for the majority of phosphatidyHnositol 3,4,5-trisphosphate formation in chemoattractant-stimulated human neutrophils. J Biol Chem 271:25204–25207

    PubMed  CAS  Google Scholar 

  39. Berton G, Fumagalli L, Laudanna C, Sorio C (1994) ß2 integrinependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J Cell Biol 126:1111–1121

    PubMed  CAS  Google Scholar 

  40. Corey S, Eguinoa A, Puyana-Theall K, et al (1993) Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 30H-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J 12:2681–2690

    PubMed  CAS  Google Scholar 

  41. Asahi M, Taniguchi T, Hashimoto E, Inazu T, Maeda H, Yamamura H (1993) Activation of protein-tyrosine kinase p72syk with concanavalin A in polymorphonuclear neutrophils. J Biol Chem 268:23334–23338

    PubMed  CAS  Google Scholar 

  42. Kraft AS, Berkow RL (1987) Tyrosine kinase and phosphotyrosine phosphatase activity in human promyelocytic leukemia cells and human polymorphonuclear leukocytes. Blood 70:356–362

    PubMed  CAS  Google Scholar 

  43. Kansha M, Takeshige K, Minakami S (1993) Decrease in the phosphotyrosine phosphatase activity in the plasma membrane of human neutrophils on stimulation by phorbol 12-myristate 13-acetate. Biochim Biophys Acta Mol Cell Res 1179:189–196

    CAS  Google Scholar 

  44. Lloyds D, Hallett MB (1994) Neutrophil “priming” induced by orthovanadate: Evidence of a role for tyrosine phosphorylation. Biochem Pharmacol 48:15–21

    PubMed  CAS  Google Scholar 

  45. Grinstein S, Furuya W, Lu DJ, Mills GB (1990) Vanadate stimulates oxygen consumption and tyrosine phosphorylation in electropermeabilized human neutrophils. J Biol Chem 265: 318–327

    PubMed  CAS  Google Scholar 

  46. Mitsuyama T, Takeshige K, Minakami S (1993) Tyrosine phosphorylation is involved in the respiratory burst of electropermeabilized human neutrophils at a step before diacylglycerol formation by phospholipase C. FEBS Lett 322:280–284

    PubMed  CAS  Google Scholar 

  47. Rotin D, Goldstein BJ, Fladd CA (1994) Expression of the tyrosine phosphatase LAR-PTP2 is developmentally regulated in lung epithelia. Am J Physiol 267: L263–L270

    PubMed  CAS  Google Scholar 

  48. Pulido R, Alvarez V, Mollinedo F, Sanchez-Madrid F (1992) Biochemical and functional characterization of the leucocyte tyrosine phosphatase CD45 (CD45RO, 180 kD) from human neutrophils. In vivo upregulation of CD45RO plasma membrane expression on patients undergoing haemodialysis. Clin Exp Immunol 87:329–335

    PubMed  CAS  Google Scholar 

  49. Fialkow L, Chan CK, Downey G (1997) Regulation of protein tyrosine phosphatase activity in neutrophils: Modulation by oxidants. J Immunol 158:5409–5417

    PubMed  CAS  Google Scholar 

  50. Brumell J, Chan CK, Butler J, et al (1997) Regulation of SHP-1 during activation of human neutrophils: Role of protein kinase C. J Biol Chem 272:875–882

    PubMed  CAS  Google Scholar 

  51. Uchida T, Matozaki T, Matsuda K, et al (1993) Phorbol ester stimulates the activity of a protein tyrosine phosphatase containing SH2 domains (PTPIC) in HL-60 leukemia cells by increasing gene expression. J Biol Chem 268:11845–11850

    PubMed  CAS  Google Scholar 

  52. Knutson KL, Hmama Z, Herrera-Velit P, Rochford R, Reiner NE (1998) Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes; Role of the src homology 2 containing tyrosine phosphatase 1. J Biol Chem 273:645–652

    PubMed  CAS  Google Scholar 

  53. Yi T, Ihle J (1993) Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. Mol Cell Biol 13:3350–3358

    PubMed  CAS  Google Scholar 

  54. Paulson RF, Vesely S, Siminovitch KA, Bernstein A (1996) Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shpl. Nature Genet 13:309–315

    PubMed  CAS  Google Scholar 

  55. Chen HE, Chang S, Trub T, Neel BG (1996) Regulation of colony-stimulating factor 1 receptor signahng by the SH2 domain-containing tyrosine phosphatase SHPTPl. Mol Cell Biol 16:3685–3697

    PubMed  CAS  Google Scholar 

  56. Vambutas V, Kaplan DR, Sells MA, Chernoff J (1995) Nerve growth factor stimulates tyrosine phosphorylation and activation of Src homology-containing protein-tyrosine phosphatase 1 in PC 12 ceils. J Biol Chem 270:25629–25633

    PubMed  CAS  Google Scholar 

  57. Tomic S, Greise RU, Lammers R, et al (1995) Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTPIC. J Biol Chem 270:21277–21284

    PubMed  CAS  Google Scholar 

  58. David M, Chen HE, Goelz S, Earner AC, Neel BG (1995) Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTPl. Mol Cell Biol 15:7050–7058

    PubMed  CAS  Google Scholar 

  59. Klingmüller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SH-PTPl to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80:729–738

    PubMed  Google Scholar 

  60. Klingmüller U (1997) The role of tyrosine phosphorylation in proliferation and maturation of erythroid progenitor cells — signals emanating from the erythropoietin receptor. Eur J Biochem 249:637–647

    PubMed  Google Scholar 

  61. Law CL, Sidorenko SP, Chandran KA, et al (1996) CD22 associates with protein tyrosine phosphatase IC, Syk, and phospholipase C-gamma(l) upon B cell activation. J Exp Med 183:547–560

    PubMed  CAS  Google Scholar 

  62. Nadler MJS, Chen B, Anderson JS, Wortis HH, Neel BG (1997) Protein-tyrosine phosphatase SHP-1 is dispensable for FcgammaRIIB-mediated inhibition of B cell antigen receptor activation. J Biol Chem 272:20038–20043

    PubMed  CAS  Google Scholar 

  63. Vogel W, Lammers R, Huang J, Ullrich A (1993) Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259:1611–1614

    PubMed  CAS  Google Scholar 

  64. Binstadt BA, Brumbaugh KM, Dick CJ, et al (1996) Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 5:629–638

    PubMed  CAS  Google Scholar 

  65. Lorenz U, Bergemann AD, Steinberg HN, et al (1996) Genetic analysis reveals cell type-spe-cific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHPl. J Exp Med 184:1111–1126

    PubMed  CAS  Google Scholar 

  66. Pias DR, Johnson R, Pingel JT, et al (1996) Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 272:1173–1176

    Google Scholar 

  67. Pani G, Kozlowski M, Gambier JC, Mills GB, Siminovitch KA (1995) Identification of the tyrosine phosphatase PTPIC as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J Exp Med 181:2077–2084

    PubMed  CAS  Google Scholar 

  68. D’Ambrosio D, Hippen KL, Minskoff SA, et al (1995) Recruitment and activation of PTPIC in negative regulation of antigen receptor signaling by FcgammaRIIBl. Science 268: 293–297

    PubMed  Google Scholar 

  69. Kon-Kozlowski M, Pani G, Pawson T, Siminovitch KA (1996) The tyrosine phosphatase PTPIC associates with Vav, Grb2, and mSosl in hematopoietic cells. J Biol Chem 271: 3856–3862

    PubMed  CAS  Google Scholar 

  70. Doody GM, Justement LB, Delibrias CC, et al (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269:242–244

    PubMed  CAS  Google Scholar 

  71. Tsui HW, Siminovitch KA, de Souza L, Tsui FW (1993) Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet 4:124–129

    PubMed  CAS  Google Scholar 

  72. Kozlowski M, Mlinaric-Rascan I, Feng GS, Shen R, Pawson T, Siminovitch KA (1993) Expression and catalytic activity of the tyrosine phosphatase PTPIC is severely impaired in motheaten and viable motheaten mice. J Exp Med 178:2157–2163

    PubMed  CAS  Google Scholar 

  73. Bignon JS, Siminovitch KA (1994) Identification of PTPIC mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. CHn Immunol Immunopathol 73:168–179

    CAS  Google Scholar 

  74. Obermeier H, Sellmayer A, Danesch U, Aepfelbacher M (1995) Cooperative effects of interferon-gamma on the induction of NADPH oxidase by retinoic acid or l,25(OH)2-vitamin D3 in monocytic U937 cells. Biochim Biophys Acta 1269:25–31

    PubMed  Google Scholar 

  75. Granger DN, Kubes P (1994) The microcirculation and inflammation: Modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55:662–675

    PubMed  CAS  Google Scholar 

  76. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76:301–314

    PubMed  CAS  Google Scholar 

  77. Lundgren-Akerlund E, Berger E, Arfors KE (1992) Effect of divalent cations on adhesion of polymorphonuclear leukocytes to matrix molecules in vitro. J Leukoc Biol 51:603–608

    PubMed  CAS  Google Scholar 

  78. Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8:504–512

    PubMed  CAS  Google Scholar 

  79. Firestein GS, Bullough DA, Erion MD, et al (1995) Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor: The role of selectins. J Immunol 154:326–334

    PubMed  CAS  Google Scholar 

  80. Brown EJ, Lindberg FP (1996) Leucocyte adhesion molecules in host defence against infection. Ann Med 28:201–208

    PubMed  CAS  Google Scholar 

  81. Wright SD, Rao PE, Van Voorhis WC, et al (1983) Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci USA 80:5699–5703

    PubMed  CAS  Google Scholar 

  82. Nathan CF (1987) Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 80: 1550–1560

    PubMed  CAS  Google Scholar 

  83. Berton G, Yan SR, Fumagalli L, Lowell CA (1996) Neutrophil activation by adhesion: mechanisms and pathophysiological impHcations. Int J CHn Lab Res 26:160–177

    CAS  Google Scholar 

  84. Suchard SJ, Boxer LA (1994) Exocytosis of a subpopulation of specific granules coincides with H2O2 production in adherent human neutrophils. J Immunol 152:290–301

    PubMed  CAS  Google Scholar 

  85. Nathan C, Srimal S, Färber C, et al (1989) Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD 11/CD 18 integrins. J Cell Biol 109:1341–1349

    PubMed  CAS  Google Scholar 

  86. Nauseef WM, De Alarcon P, Bale JF, Clark RA (1986) Aberrant activation and regulation of the oxidative burst in neutrophils with Mol glycoprotein deficiency. J Immunol 137: 636–642

    PubMed  CAS  Google Scholar 

  87. Waddell TK, Fialkow L, Chan CK, Kishimoto TK, Downey GP (1994) Potentiation of the oxidative burst of human neutrophils. A signaling role for L-selectin. J Biol Chem 269: 18485–18491

    PubMed  CAS  Google Scholar 

  88. Laudanna C, Constantin G, Baron P, et al (1994) Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-a and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule. J Biol Chem 269:4021–4026

    PubMed  CAS  Google Scholar 

  89. Crockett-Torabi E, Sulenbarger B, Smith CW, Fantone JC (1995) Activation of human neutrophils through L-selectin and Mac-1 molecules. J Immunol 154:2291–2302

    PubMed  CAS  Google Scholar 

  90. Waddell TK, Fialkow L, Chan CK, Kishimoto TK, Downey GP (1995) Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase. J Biol Chem 270:15403–15411

    PubMed  CAS  Google Scholar 

  91. Brenner B, Grassme HU, Muller C, Lang F, Speer CP, Gulbins E (1998) L-selectin stimulates the neutral sphingomyelinase and induces release of ceramide. Exp Cell Res 243:123–128

    PubMed  CAS  Google Scholar 

  92. Brenner B, Weinmann S, Grassme H, Lang F, Linderkamp 0, Gulbins E (1997) L-selectin activates JNK via src-like tyrosine kinases and the small G-protein Rae. Immunology 92: 214–219

    PubMed  CAS  Google Scholar 

  93. Brenner B, Gulbins E, Busch GL, Koppenhoefer U, Lang F, Linderkamp O (1997) L-selectin regulates actin polymerisation via activation of the small G-protein Rac2. Biochem Biophys Res Commun 231:802–807

    PubMed  CAS  Google Scholar 

  94. Tsang YT, Neelamegham S, Hu Y, et al (1997) Synergy between L-selectin signaling and chemotactic activation during neutrophil adhesion and transmigration. J Immunol 159: 4566–4577

    PubMed  CAS  Google Scholar 

  95. Pavalko FM, Walker DM, Graham L, Goheen M, Doerschuk CM, Kansas GS (1995) The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via α-actinin: Receptor positioning in microvilli does not require interaction with α-actinin. J Cell Biol 129: 1155–1164

    PubMed  CAS  Google Scholar 

  96. Hynes RO (1992) Integrins: variety, versatility, and interactions in cell adhesion. Cell 69: 11–25

    PubMed  CAS  Google Scholar 

  97. Burridge K, Path K, Kelly G, Nuckols G, Turner C (1988) Transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525

    PubMed  CAS  Google Scholar 

  98. Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K (1986) Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage. Nature 320:531–533

    PubMed  CAS  Google Scholar 

  99. Lindberg FP, Gresham HD, Schwarz E, Brown EJ (1993) Molecular cloning of integrin-associated protein: An immunoglobulin family member with multiple membrane-spanning domains implicated in αvβ3-dependent ligand binding. J Cell Biol 123:485–496

    PubMed  CAS  Google Scholar 

  100. Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS (1992) Integrin-dependent phosphorylation and activation of the protein tyrosine kinase ppl25FAK in platelets. J Cell Biol 119:905–912

    PubMed  CAS  Google Scholar 

  101. Dedhar S, Hannigan GE (1996) Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol 8:657–669

    PubMed  CAS  Google Scholar 

  102. Kolanus W, Nagel W, Schiller B, et al (1996) a1β2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86:233–242

    PubMed  CAS  Google Scholar 

  103. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, et al (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379:91–96

    PubMed  CAS  Google Scholar 

  104. Coppolino M, Leung-Hagesteijn C, Dedhar S, Wilkins J (1995) Inducible interaction of integrin alpha 2 beta 1 with calreticulin. Dependence on the activation state of the integrin. J Biol Chem 270:23132–23138

    PubMed  CAS  Google Scholar 

  105. Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386:843–847

    PubMed  CAS  Google Scholar 

  106. Zhou M, Todd RF, Van de Winkel JGJ, Petty HJ (1993) Cocapping of the leukoadhesion molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fcgamma receptor III on human neutrophils: possible role of lectin-like interactions. J Immunol 150:3030–3041

    PubMed  CAS  Google Scholar 

  107. Berditchevski F, Tolias KF, Wong K, Carpenter C, Hemler M (1997) A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem 272:2595–2598

    PubMed  CAS  Google Scholar 

  108. Hermanowski-Vosatka A, Van Strijp JA, Swiggard WJ, Wright SD (1992) Integrin modulating factor-1: a lipid that alters the function of leukocyte integrins. Cell 68:341–352

    PubMed  CAS  Google Scholar 

  109. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95:11211–11216

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kruger, J., Dong, Q., Downey, G. (2002). Regulation of Neutrophil Activation in Acute Lung Injury and SIRS. In: Marshall, J.C., Cohen, J. (eds) Immune Response in the Critically Ill. Update in Intensive Care Medicine, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57210-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57210-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42589-2

  • Online ISBN: 978-3-642-57210-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics