Skip to main content

Relaxation Models and Finite Element Schemes for the Shallow Water Equations

  • Conference paper

Abstract

We consider the one-dimensional system of shallow water equations (or SaintVenant system) with a source term

$$ {{h}_{t}} + {{(hu)}_{x}} = 0, $$
((1a))
$$ {{(hu)}_{t}} + {{(h{{u}^{2}} + \frac{g}{2}{{h}^{2}})}_{x}} = - ghZ', $$
((1b))

which describes the flow at time t ≥ 0 at point x ε ℝ, where h(x, t) ≥ 0 is the height of water, u(x, t) is the velocity, Z(x) is the bottom height and g the gravity constant. In the sequel will denote Q = hu the discharge. System (1) belongs in the more general class of hyperbolic systems with source terms

$$ {{u}_{t}} + f{{(u)}_{x}} = q(u), $$
((2))

where u is a vector valued function and f, q are the given flux and source functions. In this paper we propose relaxation models and corresponding time discrete and finite element schemes for approximating (1). Our schemes can be formulated for the more general system (2) and special attention is given in the steady state approximations and their relation to the exact steady states especially for (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvanitis, Ch., Katsaounis, T., Makridakis, Ch. (2001): Adaptive finite element relaxation schemes for hyperbolic conservations laws, Math. Model. Numer. Anal., 35, 17–33

    Article  MathSciNet  MATH  Google Scholar 

  2. Aral, M., Zhang, Y., Jin, S., (1998): Application of relaxation scheme to wave propagation simulation in open channel networks, J. Hydraulic Engineering, 124, 1125–1133

    Article  Google Scholar 

  3. Audusse, E., Bristeau, M.O., Perthame, B. (2000): Kinetic schemes for SaintVenant equations with source terms on unstructured grids, INRIA Report RR3989

    Google Scholar 

  4. Delis, A., Katsaounis, Th., (2002): Relaxation schemes for the shallow wat er equations, Report DMA-02-02, ENS, Paris, France

    Google Scholar 

  5. Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J. A. (2001): A wave propagation method for conservation laws and balance laws with spatially varying flux functions, Univ. of Washington, Seattle, Applied Math. Tech. Rep.

    Google Scholar 

  6. Chalabi, A. (1999): Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms, Math. Comp., 68, pp. 955–970.

    Article  MathSciNet  MATH  Google Scholar 

  7. Coquel, F., Perthame, B., (1998): Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal., 35, 2223–2249

    Article  MathSciNet  MATH  Google Scholar 

  8. Dafermos, C. (1999):Hyperbolic conservation laws in continuum physics, Springer-Verlag

    Google Scholar 

  9. Gallouët, T., Herard, J.H., Seguin, N. (2000): Some approximate Godunov schemes to compute shallow water equations with topography, AIAA-2001

    Google Scholar 

  10. Gerbeau, J. F., Perthame, B. (2001): Derivation of viscous Saint-Venant system for laminar shallow water, Discrete ContinoDynam. Systems, Series B, 1, 89102

    MathSciNet  Google Scholar 

  11. Greenberg, J. M., LeRoux, A.Y. (1996): A well balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Num. Anal., 33, 1–16

    Article  MathSciNet  MATH  Google Scholar 

  12. Gosse, L. (2000): A well-balanced flux vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl., 39, 135–159

    Article  MathSciNet  MATH  Google Scholar 

  13. Gosse, L. (2001): A well balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms Math. Mod. Meth. Appl. Sci., 11, 339–365

    Article  MathSciNet  MATH  Google Scholar 

  14. Gosse, L., LeRoux, A.Y. (1996): A well-balanced scheme design ed for inhomogeneous scalar conservation laws C.R. Acad. Sci. Paris Ser. I Math., 323, 543–546

    MathSciNet  MATH  Google Scholar 

  15. Gosse, L., Makridakis, Ch. (1998): A-posteriori error estimates for numerical approximations to scalar conservations laws: schemes satisfying strong and weak entropy inequalities, IACM-FORTH, Technical Report 98-4

    Google Scholar 

  16. Gosse, L., Makridakis, Ch. (2000): Two a-posteriori error estimates for one dimensional scalar conservation laws, SIAM J. Numer. Anal., 38, 964–988

    Article  MathSciNet  MATH  Google Scholar 

  17. Gosse, L., Tzavaras, A.E. (2001): Convergence of relaxation schemes to the equat ions of elastodynamics, Math. Comp. 70, 555–577

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, S. (2001): A steady-state capturing method for hyperbolic systems with geometrical source terms, Math. Model. Numer. Anal., 35, 631–645

    Article  MATH  Google Scholar 

  19. Jin, S., Xin, Z. (1995): The relaxing schemes of conservations laws in arbitrary space dimensions, Comm. Pure Appl. Math, 48, 235–277

    Article  MathSciNet  MATH  Google Scholar 

  20. LeVeque, R.J. (1998): Balancing source terms and flux gradients in high resolution Godunov methods: the quasi-steady wave propagation algorithm, J. Comput. Phys., 146, 346–365

    Article  MathSciNet  MATH  Google Scholar 

  21. Perthame, B., Simeoni, C. (2001): A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38, 201–231

    Article  MathSciNet  MATH  Google Scholar 

  22. de Saint-Venant, A.J. C. (1871): Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière et à l’introduction des mareé dans leur lit, C.R.Acad. Sci. Paris, 73, 147–154

    MATH  Google Scholar 

  23. Shu, C.W. (1988): Total-variation-diminishing time discretizations, SIAM J. Sc. Comp., 9, 1073–1084

    Article  MATH  Google Scholar 

  24. Stoker, J. J. (1986): Water waves, Interscience Publishers Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katsaounis, T., Makridakis, C. (2003). Relaxation Models and Finite Element Schemes for the Shallow Water Equations. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics