Skip to main content

Torsors and Ternary Moufang Loops Arising in Projective Geometry

  • Conference paper
  • First Online:
Algebra, Geometry and Mathematical Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 85))

  • 2036 Accesses

Abstract

A projective space gives rise to an affine space \(V_a\) by taking out a hyperplane \(a\). We define a natural ternary product on the set \(U_{ab} = V_a \cap V_b\), for any pair \((a,b)\) of hyperplanes. If the space is Desarguesian, we show that this ternary product is para-associative and that it coincides with the torsor structures considered in preceding work by the authors. Compared with that work, it is remarkable that—in the case of a projective space—the torsor structure can be expressed solely in terms of the lattice structure of the geometry. For general projective planes, our construction is closely related to the classical construction of ternary rings associated to such planes. In particular, for Moufang planes we show that \(U_{ab}\) is a ternary Moufang loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertram, W.: The projective geometry of a group, preprint 2012. http://arxiv.org/abs/1201.6201

  2. Bertram, W., Kinyon, M.: Associative geometries. I: torsors, linear relations and Grassmannians. J. Lie Theory 20(2), 215–252 (2010). arXiv:0903.5441 [math.RA]

  3. Bertram, W., Kinyon, M.: Associative geometries. II: involutions, the classical torsors, and their homotopes. J. Lie Theory 20(2), 253–282 (2010). arXiv:0909.4438

    MathSciNet  MATH  Google Scholar 

  4. Bruck, R.H.: A Survey of Binary Systems. Springer, Berlin (1958)

    Google Scholar 

  5. Kiechle, H.: Theory of K-loops, Lecture Notes in Mathematics, vol. 1778. Springer, Berlin (2002)

    Google Scholar 

  6. Löwe, H.: A rough classification of symmetric planes. Adv. Geom. 1, 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Löwen, R.: Symmetric planes. Pacific J. Math. 84(2), 367–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Loos, O.: Jordan Pairs, Lecture Notes in Mathematics, vol. 460. Springer, New York (1975)

    Google Scholar 

  9. Robinson, D.A.: Bol loops. Trans. Amer. Math. Soc. 123, 341–354 (1966)

    Article  MathSciNet  Google Scholar 

  10. Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. De Gruyter, Berlin (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bertram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertram, W., Kinyon, M. (2014). Torsors and Ternary Moufang Loops Arising in Projective Geometry. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds) Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics & Statistics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55361-5_20

Download citation

Publish with us

Policies and ethics