Skip to main content

Probabilistic Pharmaceutical Modelling: A Comparison Between Synchronous and Asynchronous Cellular Automata

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

Abstract

The field of pharmaceutical modelling has, in recent years, benefited from using probabilistic methods based on cellular automata, which seek to overcome some of the limitations of differential equation based models. By modelling discrete structural element interactions instead, these are able to provide data quality adequate for the early design phases in drug modelling. In relevant literature, both synchronous (CA) and asynchronous (ACA) types of automata have been used, without analysing their comparative impact on the model outputs. In this paper, we compare several variations of probabilistic CA and ACA update algorithms for building models of complex systems used in controlled drug delivery, analysing the advantages and disadvantages related to different modelling scenarios. Choosing the appropriate update mechanism, besides having an impact on the perceived realism of the simulation, also has practical benefits on the applicability of different model parallelisation algorithms and their performance when used in large-scale simulation contexts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haddish-Berhane, N., Jeong, S.H., Haghighi, K., Park, K.: Modeling film-coat non-uniformity in polymer coated pellets: a stochastic approach. Int. J. Pharm. 323(1–2), 64–71 (2006)

    Article  Google Scholar 

  2. Kaunisto, E., Marucci, M., Borgquist, P., Axelsson, A.: Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems. Int. J. Pharm. 418(1), 54–77 (2011)

    Article  Google Scholar 

  3. Siepmann, J., Siepmann, F.: Mathematical modeling of drug delivery. Int. J. Pharm. 364(2), 328–343 (2008)

    Article  Google Scholar 

  4. Barat, A., Crane, M., Ruskin, H.J.: Quantitative multi-agent models for simulating protein release from PLGA bioerodible nano- and microspheres. J. Pharm. Biomed. Anal. 48(2), 361–368 (2008)

    Article  Google Scholar 

  5. Göpferich, A.: Bioerodible implants with programmable drug release. J. Controlled Release 44(2–3), 271–281 (1997)

    Article  Google Scholar 

  6. Laaksonen, H., Hirvonen, J., Laaksonen, T.: Cellular automata model for swelling-controlled drug release. Int. J. Pharm. 380(1–2), 25–32 (2009)

    Article  Google Scholar 

  7. Bandman, O.: Synchronous versus asynchronous cellular automata for simulating nano-systems kinetics. Bull. Novosib. Comput. Cent. Ser. Comput. Sci. 25, 1–12 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Alba, E., Giacobini, M., Tomassini, M., Romero, S.: Comparing synchronous and asynchronous cellular genetic algorithms. In: Merelo Guervós, J.J., Adamidis, P.A., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.L. (eds.) PPSN VII. LNCS, vol. 2439, pp. 601–610. Springer, Heidelberg (2002)

    Google Scholar 

  9. Kalgin, K.V.: Parallel simulation of asynchronous cellular automata evolution. Bull. Novosib. Comput. Cent. Ser. Comput. Sci. 27, 55–62 (2008)

    MATH  Google Scholar 

  10. Bezbradica, M., Ruskin, H.J., Crane, M.: Modelling drug coatings: a parallel cellular automata model of ethylcellulose-coated microspheres. In: Proceedings of the International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2011), vol. 5, pp. 419–424 (2011)

    Google Scholar 

  11. Bandini, S., Bonomi, A., Vizzari, G.: What do we mean by asynchronous CA? A reflection on types and effects of asynchronicity. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 385–394. Springer, Heidelberg (2010)

    Google Scholar 

  12. Burstedde, C., Klauck, K., Schadschneider, S., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295(3–4), 507–525 (2001)

    Article  MATH  Google Scholar 

  13. Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C.: Using cellular automata to generate image representation for biological sequences. Amino Acids 28, 29–35 (2005)

    Article  Google Scholar 

  14. Baetens, J.M., der Weeën, P.V., Baets, B.D.: Effect of asynchronous updating on the stability of cellular automata. Chaos, Soliton. Fract. 45(4), 383–394 (2012)

    Article  MATH  Google Scholar 

  15. Schoenfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. Biosystems 51(3), 123–143 (1999)

    Article  Google Scholar 

  16. Cornforth, D., Green, D.G., Newth, D.: Ordered asynchronous processes in multi-agent systems. Physica D 204(1–2), 70–82 (2005)

    Article  MathSciNet  Google Scholar 

  17. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998)

    Article  MATH  Google Scholar 

  18. Bandman, O.: Parallel simulation of asynchronous cellular automata evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 41–47. Springer, Heidelberg (2006)

    Google Scholar 

  19. Thakur, R., Gropp, W.D., Toonen, B.: Minimizing synchronization overhead in the implementation of MPI one-sided communication. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 57–67. Springer, Heidelberg (2004)

    Google Scholar 

  20. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)

    Google Scholar 

  21. Bezbradica, M., Crane, M., Ruskin, H.J.: Parallelisation strategies for large scale cellular automata frameworks in pharmaceutical modelling. In: 2012 International Conference on High Performance Computing and Simulation (HPCS), pp. 223–230 (2012)

    Google Scholar 

  22. Moore, J.W., Flanner, H.H.: Mathematical comparison of curves with an emphasis on in-vitro dissolution profiles. Pharm. Technol. 20(6), 64–74 (1996)

    Google Scholar 

  23. Fatès, N., Thierry, E., Morvan, M., Schabanel, N.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Theoret. Comput. Sci. 362(1–3), 1–16 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Financial support from the ERA-Net Complexity Project, P07217, is warmly acknowledged. The parallel simulations discussed in this paper were performed on computational resources provided by Sci-Sym, DCU, and by the Irish Centre for High-End Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Bezbradica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezbradica, M., Ruskin, H.J., Crane, M. (2014). Probabilistic Pharmaceutical Modelling: A Comparison Between Synchronous and Asynchronous Cellular Automata. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics