Skip to main content

Universal Multi-complexity Measures for Physiological State Quantification in Intelligent Diagnostics and Monitoring Systems

  • Conference paper
Biomedical Informatics and Technology (ACBIT 2013)

Abstract

Previously we demonstrated that performance of heart rate variability indicators computed from necessarily short time series could be significantly improved by combination of complexity measures using boosting algorithms. Here we argue that these meta-indicators could be further incorporated into various intelligent systems. They can be combined with other statistical techniques without additional recalibration. For example, usage of distribution moments of these measures computed on consecutive short segments of the longer time series could increase diagnostics accuracy and detection rate of emerging abnormalities. Multiple physiological regimes are implicitly encoded in such ensemble of base indicators. Using an ensemble as a state vector and defining distance metrics between these vectors, the encoded fine-grain knowledge can be utilized using instance-based learning, clustering algorithms, and graph-based techniques. We conclude that the length change of minimum spanning tree based on these metrics provides an early indication of developing abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seely, A.J.-E., Macklem, P.T.: Complex systems and the technology of variability analysis. Critical Care 8, 367–384 (2004)

    Article  Google Scholar 

  2. Belair, J., et al.: Dynamical Disease: Mathematical Analysis of Human Illness. AIP Press, New York (1995)

    MATH  Google Scholar 

  3. Voss, A., Schulz, S., Schroederet, R., et al.: Methods derived from nonlinear dynamics for analyzing heart rate variability. Phylosophical Transactions of the Royal Society A 367, 277–296 (2008)

    Article  Google Scholar 

  4. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology: Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Circulation 93, 1043–1065 (1996)

    Google Scholar 

  5. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  6. Gavrishchaka, V.V., Senyukova, O.: Robust algorithmic detection of the developed cardiac pathologies and emerging or transient abnormalities from short periods of RR data. In: 2011 International Symposium on Computational Models for Life Sciences, AIP Conference Proceedings, New York, pp. 215–224 (2011)

    Google Scholar 

  7. Gavrishchaka, V.V., Senyukova, O.V.: Robust Algorithmic Detection of Cardiac Pathologies from Short Periods of RR Data. In: Pham, T., Jain, L.C. (eds.) Knowledge-Based Systems in Biomedicine. SCI, vol. 450, pp. 137–153. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Senyukova, O., Gavrishchaka, V.: Ensemble Decomposition Learning for Optimal Utilization of Implicitly Encoded Knowledge in Biomedical Applications. In: IASTED International Conference on Computational Intelligence and Bioinformatics, pp. 69–73. ACTA Press, Calgary (2011)

    Google Scholar 

  9. Bart, E., Ullman, S.: Single-example learning of novel classes using representation by similarity. In: British Machine Vision Conference (2005)

    Google Scholar 

  10. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and Techniques. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  11. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (1999)

    Google Scholar 

  12. Peng, C.-K., Havlin, S., Stanley, E.H., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  13. Costa, M., Goldberger, A.L., Peng, C.-K.: Multiscale entropy analysis of biological signals. Physical Review Letters E 71, 021906 (2005)

    Google Scholar 

  14. Makowiec, D., Dudkowska, A., Zwierz, M., et al.: Scale Invariant Properties in Heart Rate Signals 37, Acta Physica Polonica B, Cracow (2006)

    Google Scholar 

  15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  16. Schapire, R.E.: The Design and Analysis of Efficient Learning Algorithms. MIT Press, Cambridge (1992)

    Google Scholar 

  17. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  18. Jin, R., Liu, Y., Si, L., et al.: A new boosting algorithm using input-dependent regularizer. In: 20th International Conference on Machine Learning. AAAI Press, Palo Alto (2003)

    Google Scholar 

  19. Gavrishchaka, V.V., Senyukova, O.V., Koepke, M.E., Kryuchkova, A.I.: Multi-objective physiological indicators based on complementary complexity measures: application to early diagnostics and prediction of acute events. In: International Conference on Computer and Computational Intelligence, ASME Digital Collection, pp. 95–106 (2011)

    Google Scholar 

  20. Onnela, J.-P., Chakraborti, A., Kaski, K., et al.: Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E 68, 056110 (2003)

    Google Scholar 

  21. Tumminello, M., Lillo, F., Mantegna, R.N.: Correlation, hierarchies, and networks in financial markets. Journal of Economic Behavior & Organization 75, 40–58 (2010)

    Article  Google Scholar 

  22. Mantegna, R.N.: Hierarchical structure in financial markets. European Physics Journal B 11, 193–197 (1999)

    Article  Google Scholar 

  23. Vandewalle, N., Brisbois, F., Tordoir, X.: Non-random topology of stock markets. Quantitative Finance 1, 372–374 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Senyukova, O., Gavrishchaka, V., Koepke, M. (2014). Universal Multi-complexity Measures for Physiological State Quantification in Intelligent Diagnostics and Monitoring Systems. In: Pham, T.D., Ichikawa, K., Oyama-Higa, M., Coomans, D., Jiang, X. (eds) Biomedical Informatics and Technology. ACBIT 2013. Communications in Computer and Information Science, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54121-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54121-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54120-9

  • Online ISBN: 978-3-642-54121-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics