Skip to main content

Characterization of Calcium Phosphates Using Vibrational Spectroscopies

  • Chapter
  • First Online:
Advances in Calcium Phosphate Biomaterials

Abstract

Vibrational spectroscopies are extensively used for the characterization of calcium phosphates either as natural biological minerals (bone, teeth, ectopic calcifications) or as biomaterials (bioceramics, coatings, composites). The present review begins with a theoretical description of expected spectra for the main calcium phosphate phases (i.e., brushite, monetite, octacalcium phosphate, tricalcium phosphates, apatites, amorphous calcium phosphate) followed by the analysis of real spectra, line positions and assignments, and observed anomalies. In the second part, the spectra of complex well-crystallized ion-substituted apatites and other calcium phosphates, as well as solid solutions, are investigated, and the information gained regarding the substitution types and ion distributions are derived. Finally, we will examine and interpret the spectra of nanocrystalline apatites considering the ion substitution effects and the existence of a surface hydrated layer. Quantification processes and spectra treatments are briefly presented and discussed. Examples of the use of vibrational spectroscopies for biomaterials and biominerals characterization will be detailed for coating evaluations, including spectroscopic imaging, following up on mineral cement setting reactions, adsorption studies, near infrared investigations of surface water, residual strains determinations in bone, orientation of apatite crystals in biological tissues, and crystallinity and maturity of bone mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishop DM (1993) Group theory and chemistry. Dover Publications, New York

    Google Scholar 

  2. Ross SD (1972) Inorganic infrared and Raman spectra. McGraw-Hill, Maidenhead

    Google Scholar 

  3. Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  4. Santhyanarayana DN (2011) Vibrational spectroscopy. New Age International Publisher, New Delhi

    Google Scholar 

  5. Casciani F, Condrate RA Sr (1979) The vibrational spectra of brushite. CaHPO4 ·2H2O. Spectrosc Lett 12:699–713

    Article  Google Scholar 

  6. White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals Mineralogical society monograph, 4th edn. Mineralogical Society, London

    Google Scholar 

  7. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  8. Bertoluzza A, Battaglia MA, Bonora S, Monyi P (1985) Hydrogen bonds in calcium acidic phosphates by infrared and Raman spectra. J Mol Struct 127:35–45

    Article  Google Scholar 

  9. Trpkovska M, Soptrajanov B, Malkov P (1999) FTIR re-investigation of the spectra of synthetic brushite and its partially deuterated analogues. J Mol Struct 480–481:661–666

    Article  Google Scholar 

  10. Posset U, Löcklin E, Thull R, Kiefer W (1998) Vibrational spectroscopic study of tetracalcium phosphate in pure polycrystalline form and as a constituent of a self-setting bone cement. Biomed Mater Res 40:640–645

    Article  Google Scholar 

  11. Markovic M, Fowler BO, Tung MS (2004) Preparation and characterization of a comprehensive hydroxyapatite reference standard. J Res Natl Inst Stand Technol 109:553–568

    Article  Google Scholar 

  12. Fowler BO, Moreno EC, Brown WE (1996) Infrared spectra of hydroxyapatite octacalcium phosphate and pyrolysed octacalcium phosphate. Arch Oral Biol 11:477–492

    Article  Google Scholar 

  13. Jillavenkatesa A, Condrate RA Sr (1998) The infrared and Raman spectra of α- and β- tricalcium phosphate (Ca3(PO4)2). Spectrosc Lett 31:1619–1634

    Article  Google Scholar 

  14. Fowler BO, Markovic M, Brown WE (1993) Octacalcium phosphate. 3. Infrared and Raman vibrational spectra. Chem Mater 5:1417–1423

    Article  Google Scholar 

  15. Ulian G, Valdre G, Corno M, Ugliengo P (2013) The vibrational features of hydroxylapatite and type A carbonated apatite: a first principle contribution. Am Miner 98:752–759

    Article  Google Scholar 

  16. Treboux G, Layrolle P, Kanzaki N, Onuma K, Ito A (2000) Symmetry of Posner’s cluster. J Am Chem Soc 122:8323–8324

    Article  Google Scholar 

  17. Yin X, Stott J (2003) Biological calcium phosphates and Posner’s cluster. J Chem Phys 118:3717–3723

    Article  Google Scholar 

  18. Petrov I, Soptrajanov B, Fuson N, Lawson JR (1967) Infrared investigation of dicalcium phosphates. Spectrochim Acta 23A:2636–2646

    Google Scholar 

  19. Penel G, Leroy G, van Landuyt P, Flautre B, Hardouin P, Lemaitre J, Leroy G (1999) Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model. Bone 25(suppl 2):81S–84S

    Article  Google Scholar 

  20. Penel G, Leroy G, Rey C, Bres E (1998) Micro-Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  Google Scholar 

  21. Walters MA, Leung YC, Blumenthal NC, LeGeros RZ, Konsker KA (1990) A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J Inorg Biochem 39:193–200

    Article  Google Scholar 

  22. Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E (1997) Infrared and Raman microspectrometry study of fluor- fluor-hydroxy- and hydroxy-apatites powders. J Mater Sci Mater Med 8:271–276

    Article  Google Scholar 

  23. Trombe JC (1973) Decomposition et réactivité d’apatites hydroxylées et carbonatée. Ann Chim Paris 8:251–269

    Google Scholar 

  24. Fowler BO (1973) Infrared studies of apatites. I. Vibrational assignments for calcium, strontium and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem 13:94–207

    Google Scholar 

  25. Tsuda H, Arends J (1994) Orientation micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites. J Dent Res 73:1703–1710

    Google Scholar 

  26. Herzberg G (1968) Molecular spectra and molecular structure. II Infrared and Raman spectra of polyatomic molecules. D. Van Nostrand Company, London

    Google Scholar 

  27. Rey C, Collins B, Goehl T, Glimcher MJ (1989) The carbonate environment in bone mineral. A resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  Google Scholar 

  28. Kaupinnen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    Article  Google Scholar 

  29. Pleshko N, Boskey A, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60:786–793

    Article  Google Scholar 

  30. Galadeta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16

    Article  Google Scholar 

  31. Morris MD, Drumm CA (1995) Microscopic Raman line–imaging with principal component analysis. Appl Spectrosc 49:1331–1337

    Article  Google Scholar 

  32. Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016

    Article  Google Scholar 

  33. Hadrich A, Lautié A, Mhiri T (2001) Vibrational study and fluorescence bands in the FT-Raman spectra of Ca10−xPbx(PO4)6(OH)2 compounds. Spectrochim Acta Part A 57:1673–1681

    Article  Google Scholar 

  34. de Mul FFM, Otto C, Greve J, Arends J, ten Bosch JJ (1998) Calculation of the Raman line broadening on carbonation in synthetic hydroxyapatite. J Raman Spectrosc 19:13–21

    Article  Google Scholar 

  35. He Q, Liu X, Hu X, Li S, Wang H (2011) Solid solution between lead fluorapatite and lead fluorvanadate apatite: mixing behavior, Raman feature and thermal expansivity. Phys Chem Miner 38:741–752

    Article  Google Scholar 

  36. Trombe JC, Montel G (1973) Sur le spectre d’absorption infrarouge des apatites dont les tunnels contiennent des ions bivalents et des lacunes. CR Acad Sci Paris 276:1271–1274

    Google Scholar 

  37. Barroug A, Rey C, Trombe JC (1994) Precipitation and formation mechanism of type AB carbonate apatite analogous to dental enamel. Adv Mater Res 1–2:147–153

    Article  Google Scholar 

  38. Fleet ME, Liu X (2007) Coupled substitution of type A and B carbonate in sodium bearing apatites. Biomaterials 28:916–926

    Article  Google Scholar 

  39. Legeros RZ, LeGeros JP (1996) Carbonate apatite: formation and properties. Bioceramics 9:161–164

    Google Scholar 

  40. Quillard S, Paris M, Deniard P, Gildenhaar R, Berger G, Obadia L, Bouler JM (2011) Structural and spectroscopic characterization of a series of potassium and/or sodium-substituted β-tricalcium phosphate. Acta Biomater 7:1844–1852

    Article  Google Scholar 

  41. Eichert D, Drouet C, Sfihi H, Rey C, Combes C (2007) Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Kendal JB (ed) Biomaterials research advances. Nova Science, New York, pp 93–143

    Google Scholar 

  42. Jäger C, Welzel T, Meyer-Zaika W, Epple M (2006) A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44:573–580

    Article  Google Scholar 

  43. Eichert D, Combes C, Drouet C, Rey C (2005) Formation and evolution of hydrated surface layers of apatites. Key Eng Mater 284–286:3–6

    Article  Google Scholar 

  44. Brown WE, Mathew M, Chow LC (1984) Roles of octacalcium phosphate in surface chemistry of apatites. In: Misra DN (ed) Adsorption and surface chemistry of hydroxyapatite. Plenum Press, New York, pp 13–28

    Chapter  Google Scholar 

  45. Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biomaterials and biominerals. Mater Sci Eng C 27:198–205

    Article  Google Scholar 

  46. Leeuwenburgh SCG, Wolke JGC, de Jansen JA, Groot K (2008) Calcium phosphate coatings. In: Kokubo T (ed) Bioceramics and their clinical applications. Woodhead Publishing Limited, Cambridge, pp 464–484

    Chapter  Google Scholar 

  47. Sun L, Berndt CC, Gross KA, Kucuk A (2001) Material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings: a review. J Biomed Mater Res 58:570–592

    Article  Google Scholar 

  48. Gross KA, Berndt C, Herman H (1998) Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J Biomed Mater Res Part A 39:407–414

    Article  Google Scholar 

  49. Carayon M, Lacout J-L (2003) Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Solid State Chem 172:339–350

    Article  Google Scholar 

  50. Demnati I, Grossin D, Combes C, Rey C (2013) Plasma sprayed apatite coatings: review of physical-chemical aspects and their biological consequences. J Med Biol Eng 34:1–7. doi:10.5405/jmbe.1459

    Google Scholar 

  51. Yan L, Leng Y, Weng L-T (2003) Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. Biomaterials 24:2585–2592

    Article  Google Scholar 

  52. Podlesak H, Pawlowski L, d’Haese R, Laureyns J, Lampke T, Bellayer S (2010) Advanced microstructural study of suspension plasma sprayed hydroxyapatite coatings. J Therm Spray Technol 19:657–664

    Article  Google Scholar 

  53. Weinlaender M, Beumer J, Kenney EB, Moy PK (1992) Raman microprobe investigation of the calcium phosphate phases of three commercially available plasma-flame-sprayed hydroxyapatite-coated dental implants. J Mater Sci Mater Med 3:397–401

    Article  Google Scholar 

  54. Demnati I, Parco M, Grossin D, Fagoaga I, Drouet C, Barykin G, Combes C, Braceras I, Goncalves S, Rey C (2012) Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surf Coat Technol 206:2342–2353

    Article  Google Scholar 

  55. Demnati I (2011) Développement et caractérisation de revêtements bioactifs d’apatite obtenus par projection plasma à basse énergie: application aux implants biomédicaux. PhD thesis, Institut National Polytechnique de Toulouse

    Google Scholar 

  56. Tadier S (2009) Etude des propriétés physico-chimiques et biologiques de ciments biomédicaux à base de carbonate de calcium: apport du procédé de co-broyage. PhD thesis, Institut National Polytechnique de Toulouse

    Google Scholar 

  57. Tadier S, Le Bolay N, Rey C, Combes C (2011) Co-grinding significance for calcium carbonate-calcium phosphate mixed cement. Part I: effect of particle size and mixing on solid phase reactivity. Acta Biomater 7:1817–1826

    Article  Google Scholar 

  58. Cummings LJ, Snyder MA, Brisack K (2009) Protein chromatography on hydroxyapatite columns. Methods Enzymol 463:387–404

    Article  Google Scholar 

  59. Tamerler C, Sarikaya M (2009) Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides. Philos Trans A Math Phys Eng Sci 367:1705–1726

    Article  Google Scholar 

  60. Goldberg HA, Warner KJ, Hunter GK (2001) Binding of bone sialo-protein osteopontin and synthetic polypeptides to hydroxyapatite. Connect. Tissue Res 42:25–37

    Article  Google Scholar 

  61. Al-Kattan A, Errassifi F, Sautereau AM, Sarda S, Dufour P, Barroug A, Dos Santos I, Combes C, Grossin D, Rey C, Drouet C (2010) Medical potentialities of biomimetic apatites through adsorption, ionic substitution, and mineral/organic associations: three illustrative examples. Adv Eng Mater 12:B224–B233

    Article  Google Scholar 

  62. Juillard A, Falgayrac G, Cortet B, Vieillard MH, Azaroual N, Hornez JC, Penel G (2010) Molecular interactions between zoledronic acid and bone: an in vitro Raman microspectroscopic study. Bone 47:895–904

    Article  Google Scholar 

  63. Cukrowski I, Popovic L, Barnard W, Paul SO, van Roovyen PH, Liles DC (2007) Modeling and spectroscopic studies of bisphosphonates-bone interactions. The Raman, NMR and crystallographic investigations of Ca-HEDP complexes. Bone 41:668–678

    Article  Google Scholar 

  64. Xie HN, Stevenson R, Stone N, Hernandez-Santana A, Faulds K, Graham D (2012) Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. Angew Chem Int Ed Engl 51:8509–8511

    Article  Google Scholar 

  65. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97:2692–2696

    Article  Google Scholar 

  66. Pascaud P, Gras P, Coppel Y, Rey C, Sarda S (2013) Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites. Langmuir 29:2224–2232

    Article  Google Scholar 

  67. Pascaud P (2012) Apatite nanocrystallines biomimétiques comme modèles de la réactivité osseuse: étude des propriétés d’adsorption et de l’activité cellulaire d’un bisphosphonate, le tiludronate. Thesis INPT, University of Toulouse

    Google Scholar 

  68. Burneau A, Barres O, Gallas JP, Lavalley JC (1990) Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 2 Characterization by infrared spectroscopy of the interactions with water. Langmuir 6:1364–1372

    Article  Google Scholar 

  69. Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G (2009) Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir 25:5647–5654

    Article  Google Scholar 

  70. Takeuchi M, Bertinetti L, Martra G, Coluccia S, Anpo M (2009) States of H2O adsorbed on oxides: an investigation by near and mid infrared spectroscopy. Appl Catal A Gen 307:13–20

    Article  Google Scholar 

  71. Ishikawa T, Wakamura M, Kondo S (1989) Surface characterization of calcium hydroxylapatite by Fourier transform infrared spectroscopy. Langmuir 5:140–144

    Article  Google Scholar 

  72. Williams Q, Kettle E (1996) Infrared and Raman spectra of Ca5(PO4)6F2-fluorapatite at high pressures: compression-induced changes in phosphate site and Davydov splitting. J Phys Chem Solids 57:417–422

    Article  Google Scholar 

  73. Xu J, Butler IS, Gilson DFR (1999) FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4 ·2H2O) and anhydrous dicalcium phosphate (CaHPO4). Spectrochem Acta Part A 55:2801–2809

    Article  Google Scholar 

  74. Xu J, Gilson DFR, Butler IS, Stangel I (1996) Effect of high external pressures on the vibrational spectra of biomedical material: calcium hydroxyapatite and calcium fluorapatite. J Biomed Mater Res 30:239–244

    Article  Google Scholar 

  75. de Carmejane O, Morris MD, Davis MK, Stixrude L, Tecklenburg M, Rajachar RM, Kohn DH (2005) Bone chemical structure response to mechanical stress studied by high pressure Raman spectroscopy. Calcif Tissue Int 76:207–213

    Article  Google Scholar 

  76. Fleet ME, Liu X, Liu X (2011) Orientation of channel carbonate ions in apatite: effect of pressure and composition. Am Miner 96:1148–1157

    Article  Google Scholar 

  77. Carden A, Rajachar RM, Morris MD, Kohn DH (2003) Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Calcif Tissue Int 72:166–175

    Article  Google Scholar 

  78. Timlin JA, Carden A, Morris MD (2000) Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal Chem 72:2229–2236

    Article  Google Scholar 

  79. Tsuda H, Arends J (1997) Raman spectroscopy in dental Research: a short review of recent studies. Adv Dent Res 11:539–547

    Article  Google Scholar 

  80. Falgayrac G, Facq S, Leroy G, Cortet B, Penel G (2010) New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Appl Spectrosc 64:775–780

    Article  Google Scholar 

  81. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  Google Scholar 

  82. Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209

    Article  Google Scholar 

  83. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Gérard Leroy for discussions regarding the content of this chapter, and we thank Imane Demnati, Solene Tadier, and Patricia Pascaud for allowing us to use the results of their Ph.D. thesis in Figs. 8.15, 8.16, and 8.17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rey, C., Marsan, O., Combes, C., Drouet, C., Grossin, D., Sarda, S. (2014). Characterization of Calcium Phosphates Using Vibrational Spectroscopies. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_8

Download citation

Publish with us

Policies and ethics