Skip to main content

Compensatory Fuzzy Logic: A Frame for Reasoning and Modeling Preference Knowledge in Intelligent Systems

  • Chapter
Soft Computing for Business Intelligence

Abstract

This paper presents a new approach to designing multivalued logic systems, called Compensatory Fuzzy Logic that besides constituting a formal system with logic properties of remarkable interest represents a bridge between Logic and Decision-Making. The main aim of this proposal is to use the language as key element of communication in the construction of semantic models that make easier the evaluation, decision-making and knowledge discovery. The axioms that constitute the base of this proposal gather actual characteristics of the decision-making processes, and the way of reasoning of people who intervene in them. Some of these axioms are inspired by approaches that adopt a descriptive position in supporting decision-making. Most axioms contain elements of a rational thought. Hence, this logical approach for decision-making may be considered as a third position that combines normative and descriptive components. This approach enters to make part of the arsenal of methods for multicriteria evaluation, adapting itself especially to those situations in which a decision-maker can verbally describe, often in an ambiguous way, the heuristic it uses when executing actions of multicriteria evaluation/classification. Principal kind of operators of Fuzzy Logic are studied according the introduced axioms. Quasi-Arithmetic Based Compensatory Logic is introduced and its particular case, the Geometric Mean Based Compensatory Logic too. The Universal and Existential quantifiers are defined according the definition of this last logic, for discrete and continues sets. An illustration example using Geometric Mean Based Compensatory Logic is used to explain the Compensatory Fuzzy Logic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baczyński, M., Jayaram, B.: Q-L implications, some properties and intersections. Fuzzy Sets and Systems 161(2), 158–188 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baczyński, M., Jayaram, B.: (S,N)- and R-implications: A state of the art survey. Fuzzy Sets and Systems 159(14), 1836–1859 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellman, R., Giertz, M.: On the Analytic Formalism of the Theory of Fuzzy Sets. Information Sciences 5, 149–156 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodenhorf, B., Demircy, M.: Strict fuzzy orderings with a given context of similarity. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 16(2), 147–178 (2008)

    Article  MathSciNet  Google Scholar 

  5. Boyssou, D., Marchant, T., Pirlot, M., Tsoukias, A., Vincke, P.: Evaluation and Decision Models with Multiple Criteria. Springer, Berlin (2006)

    Google Scholar 

  6. Chiclana, F., Herrera-Viedma, E., Alonso, S., Herrera, F.: Cardinal Consistency of Reciprocal Preferce Relations: A Characterization of Multiplicative Transitivity. IEEE Transactions on Fuzzy Systems 17(1), 14–23 (2009)

    Article  Google Scholar 

  7. Chiclana, F., Herrera, F., Herrera-Viedma, E.: A Study on the Rationality of Induced Ordered Weighted Operators Based on the Reliability of the Information Sources for Aggregation for Group Decision-Making. Kybernetika 40(1), 121–142 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Chiclana, F., Herrera, F., Herrera-Viedma, E., Martinez, L.: A note on the reciprocity in the aggregation of fuzzy preference relations using OWA operators. Fuzzy Sets and System 137, 71–83 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dasgupta, M., Deb, R.: Transitivity and Fuzzy Preferences. Social Choice and Welfare 13, 305–318 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dasgupta, M., Deb, R.: Factoring Fuzzy Transitivity. Fuzzy Set and System 118, 489–502 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. De Baets, B., Fodor, J., Perny, P.: Preferences and Decisions under Incomplete Knowledge. Physica-Verlag, Berlin (2000)

    MATH  Google Scholar 

  12. Delgado, M., Herrera, F., Herrera-Viedma, E., Martínez, L.: Combining numerical and linguistic information in group decision making. Information Sciences 107(1-4), 177–194 (1998)

    Article  MathSciNet  Google Scholar 

  13. Detiniecky, M.: Mathematical Aggregations operators and its application to Video Querying. Berkeley University (2000), http://www.lip6.fr/reports/index-eng.html

  14. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press Inc. (1980)

    Google Scholar 

  15. Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Information Sciences 36, 85–121 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dubois, D., Esteva, F., Godo, L., Prade, H.: Fuzzy-Set Based Logics. A history oriented presentation of their main development. In: Gabbay, D., Woods, J. (eds.) The Many Valued and Non-monotonic Turn Logic, Handbook of the History of Logic, vol. 8, pp. 325–449. Elsevier (2007)

    Google Scholar 

  17. Dyson, R.G.: Maximin Programming, Fuzzy Linear Programming and Multi-Criteria Decision Making. The Journal of the Operational Research Society 31, 263–267 (1980)

    MATH  Google Scholar 

  18. Espin, R., Fernández, E., Mazcorro, G., Marx-Gómez, J., Lecich, M.I.: Compensatory Logic: A fuzzy normative model for decision making. Investigation Operativa 27(2), 188–197 (2006)

    Google Scholar 

  19. Espin, R., Fernandez, E., Mazcorro, G.: A fuzzy approach to cooperative n-person games. European Journal of Operational Research 176, 1735–1751 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  21. French, S.: Decision Theory: An Introduction to the Mathematics of Rationality. Halsted Press, NY (1986)

    MATH  Google Scholar 

  22. García-Lapresta, J.L., Meneses-Poncio, L.C.: An empirical analysis of fuzzy transitivities in Decision Making. In: VIII SIGEF Congress Proceedings, pp. 129–133 (2001)

    Google Scholar 

  23. García-Lapresta, J.L., Marques, R.A.: Constructing reciprocal and stable aggregation operators. In: Proceedings AGOP, Alcala de Henares, pp. 73–78 (2003)

    Google Scholar 

  24. Gavvav, D., Metcalfe, G.: Fuzzy logics based on (0, 1)-continuous uninorms. Springer (2006)

    Google Scholar 

  25. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research 138, 247–259 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hajek, P.: Methamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  28. Hajek, P.: What is Mathematical Fuzzy Logic? Fuzzy Sets and Systems 157, 597–603 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hansson, B.: An analysis of some deontic logics. Nous 3, 373–398 (1969)

    Article  MathSciNet  Google Scholar 

  30. Hansson, S.O.: Preference-based deontic logic. Journal of Philosophical Logic 19, 75–93 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Herrera, F., Herrera-Viedma, E., Martinez, L.: A Fuzzy Linguistic Methodology To Deal With Unbalanced Linguistic Term Sets. IEEE Transactions on Fuzzy Systems 16(2), 354–370 (2008)

    Article  Google Scholar 

  32. Herrera, F., Herrera-Viedma, E., Chiclana, F.: A Study of the Origin and Uses of the Ordered Weighted Geometric Operator in Multicriteria Decision Making. International Journal of Intelligent Systems 18(6), 689–707 (2003)

    Article  MATH  Google Scholar 

  33. Herrera, F., Herrera-Viedma, E.: Linguistic Decision Analysis: Steps for Solving Decision Problems under Linguistic Information. Fuzzy Sets and Systems 115, 67–82 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A sequential selection process in Group decision making linguistic assessment approach. Information Sciences 85(4), 223–239 (1995)

    Article  MATH  Google Scholar 

  35. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of measurement. Additive and polynomial representations, vol. 1. Academic Press, New York (1971)

    MATH  Google Scholar 

  36. Lang, J., Van der Torre, L.: From belief change to preference change. In: Proceedings of the 18th European Conference on Artificial Intelligence ECAI (2008)

    Google Scholar 

  37. Lindley, D.: In: Wright G., and P. Ayton (eds.) Subjective Probability, pp. 1–37. Wiley & Sons, England (1994)

    Google Scholar 

  38. Marakas, G.: Decision Support Systems in the 21st Century. Prentice Hall (2002)

    Google Scholar 

  39. Novak, V.: Fuzzy Sets and their applications. Adam Hilger, Bristol (1989)

    MATH  Google Scholar 

  40. Novak, V., Perfilieva, I.: Evaluating linguistic expressions and functional fuzzy theories in Fuzzy Logic. In: Zadeh, L.A., Kapricz, J. (eds.) Computing with words in Information/ Intelligent Systems 1. (Foundations), pp. 383–606. Physica-Verlag (1999)

    Google Scholar 

  41. Pomerol, C.: Artificial Intelligence and Human Decision Making. In: Slowinski, R. (ed.) OR: Toward Intelligent Decision Support, 14th European Conference on Operational Research, pp. 169–196 (1995)

    Google Scholar 

  42. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Los Altos (1993)

    Google Scholar 

  43. Roberts, F.S.: Measurement theory, with applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Boston (1979)

    Google Scholar 

  44. Roy, B.: The outranking approach and the foundations of ELECTRE methods. In: Bana e Costa, C.A. (ed.) Reading in Multiple Criteria Decision Aid, pp. 155–183. Springer, Berlin (1990)

    Chapter  Google Scholar 

  45. Roy, B., Vanderpooten, D.: The European School of MCDA: A Historical Review. In: Slowinski, R. (ed.) OR: Toward Intelligent Decision Support, 14th European Conference on Operational Research, pp. 39–65 (1995)

    Google Scholar 

  46. Chen, S.-J., Chen, S.-M.: Fuzzy information retrieval based on geometric-mean averaging operators. Computers & Mathematics with Applications 49(7-8), 1213–1231 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Silvert, W.: Ecological impact classification with fuzzy sets. Ecological Modeling 96, 1–10 (1997)

    Article  Google Scholar 

  48. Slowinski, R.: Rough Set approach to Decision Analysis. AI Expert, 19–25 (March 1995)

    Google Scholar 

  49. Slowinski, R., Greco, S.: Axiomatic Basis of Aggregation Functions: Utility Function, Associative Operator, Sugeno Integral, Max-Min Weighted Sum, Decision Rules. In: Invited Lecture in XVI MCDM World Conference, Semmering, Austria (2002)

    Google Scholar 

  50. Switalski, Z.: Transitivity of Fuzzy Preferences relations: An empirical study. Fuzzy Sets and Systems 118, 503–508 (2001)

    Article  MathSciNet  Google Scholar 

  51. Switalski, Z.: General Transitivity conditions for fuzzy reciprocal preference matrices. Fuzzy Sets and Systems 137(1), 85–100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  52. Tsoukias, A., Vincke, P.: Extended preference structures in MCDA. In: Climaco, J. (ed.) Multicriteria Analysis, pp. 37–50. Springer, Berlin (1997)

    Chapter  Google Scholar 

  53. Tsoukias, A., Vincke, P.: A new axiomatic foundation of partial comparability. Theory and Decision 39, 79–114 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  54. Tsoukias, A., Vincke, P.: A survey of non conventional preference modelling. Ricerca Operativa 61, 5–49 (1992)

    Google Scholar 

  55. Velazquez-Quesada, F.R.: Inference and update. Synthese 169, 283–300 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  56. Verdegay, J.L.: A revision of Soft Computing Methodologies. In: Verdegay, J.L. (ed.) Acts from the Simposium on Fuzzy Logic and Soft Computing LFSC (EUSFLAT), pp. 151–156 (2005) (in Spanish)

    Google Scholar 

  57. Wang, Y.-M., Chin, K.-S., Poon, G.K.K., Yang, J.-B.: Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Systems with Applications 36, 1195–1207 (2009)

    Article  Google Scholar 

  58. Zadeh, L.A.: Fuzzy Sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  59. Zadeh, L.A., Kacpryzyk, J.: Computing with words in Information/Intelligent Systems 2 (Applications). STUDFUZZ, vol. 34. Phisyca-Verlag (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Alejandro Espín Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrade, R.A.E., Fernández, E., González, E. (2014). Compensatory Fuzzy Logic: A Frame for Reasoning and Modeling Preference Knowledge in Intelligent Systems. In: Espin, R., Pérez, R., Cobo, A., Marx, J., Valdés, A. (eds) Soft Computing for Business Intelligence. Studies in Computational Intelligence, vol 537. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53737-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53737-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53736-3

  • Online ISBN: 978-3-642-53737-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics