Skip to main content

Phase Transitions and Near-Critical Phenomena

  • Chapter
Fluid Sciences and Materials Science in Space

Abstract

Gravity on earth limits the study of the gas-liquid critical point of pure fluids: the compressibility diverges, the fluid becomes stratified under its own weight and a bulk sample at its critical point cannot be obtained. Heating and cooling of near-critical fluids causes severe and prolonged convective instabilities as a consequence of the divergence of the expansibility. Studies on phase separation processes are similarly affected by convection and sedimentation.

A number of experimental investigations have taken advantage of the availability of a microgravity environment to overcome these limitations. They are reviewed in this paper and future prospects are assessed. Microgravity studies having the following objectives are justifiable: (i) testing of theoretical predictions and resolving discrepancies between predictions and experiment; (ii) understanding the mechanisms which precede the attainment of equilibrium near the critical point; (iii) evidencing the processes during phase separations when gravity-driven instabilities are eliminated; (iv) understanding the interfacial phenomena in reduced gravity and (v) understanding the physical chemistry of electrolyte solutions in compressible solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Waals J.D., “Over de Continuiteit van den Gas en Vloeistoftoestand”, Thesis Univ. of Leiden, 1873

    Google Scholar 

  2. Andrews T., “On the continuity of the gaseous and liquid state of matter”, Phil. Trans. R. Soc. 159 (1869), 575

    Article  Google Scholar 

  3. van der Waals J.D., “Die Continuität des gasförmigen und flüssigen Zustandes”, Part 1, J.A. Barth, Leipzig, 1900

    Google Scholar 

  4. Gouy M., “Effets de la pression sur les fluides au point critique”, C.R. Acad. Sci. (Paris), 115 (1892), 720

    Google Scholar 

  5. Landau L. and Lifshitz E., see “Statistical Physics” — MIR Moscow 1967

    Google Scholar 

  6. See e.g. Kumar A., Krishnamurty H.R. and Gopal E.S.R., “Equilibrium Critical Phenomena in Binary Liquid Mixtures”, Phys. Rep. 98 (1983), 57

    Article  Google Scholar 

  7. Moldover M.R., Hocken R.J., Gammon R.W., Sengers J.V., “Overviews and Justifications for Low Gravity Experiments on Phase Transition and Critical Phenomena in Fluids”, NBS Techn. Note 925, 1976

    Google Scholar 

  8. Moldover M.R., Sengers J.V., Gammon R.W., Hocken R.J., “Gravity effects in fluids near the gas-liquid critical point”, Reviews of Modern Physics, Vol. 51 n° (1979), 79

    Google Scholar 

  9. Corwin J.F., Bayless R.G. and Owen G.E., “The conductivity of dilute sodium chloride solutions under supercritical conditions”, J. Phys. Chem. 64 (1960), 641

    Article  Google Scholar 

  10. Turner D.J., “Electrolyte solutions near the critical point of water”, Proc. 4th European Symposium on Materials Sciences under Microgravity, Madrid (1983), ESA-SP-191, p. 393

    Google Scholar 

  11. Ma S.K., “Modern Theory of Critical Phenomena”, Benjamin, Massachusetts, 1976

    Google Scholar 

  12. Pfeuty P. and Toulouse G., “Introduction to the Renormalization Group and Critical Phenomena, Wiley, New York, 1977

    Google Scholar 

  13. Amit D.J., “Field Theory, the Renormalization Group, and Critical Phenomena”, McGraw-Hill, New York, 1978

    Google Scholar 

  14. Hohenberg P.C., “Microscopic Structure and Dynamics of Liquids”, Ed. J. Dupuy and A.J. Dianoux (Plenum), New York, 1978

    Google Scholar 

  15. Sengers J.V. and Levelt Sengers J.M.H., “Progress in Liquid Physics”, Ed. C.A. Croxton (Wiley, Chichester), 1978

    Google Scholar 

  16. Wilson K., “Problems of Physics with many scales of length”, Sci. LAm. 241 (1979), 140

    Google Scholar 

  17. Reichl L.E., “A modern course in Statistical Physics”, Univ. Texas Press, Austin, 1980

    Google Scholar 

  18. Rowlinson J.S. and Swinton F.L., “Liquids and Liquid Mixtures”, 3rd Ed. (Butter-worths), London, 1982

    Google Scholar 

  19. Moldover M.R., in “Phase Transitions”, Cargese 1980, Ed. M. Levy, J.C. Le Guillou, J. Zinn-Justin (Plenum), New York, 1982

    Google Scholar 

  20. Sengers J.V., in “Phase Transitions”, Cargese 1980, Ed. M. Levy, J.C. Le Guillou, J. Zinn-Justin (Plenum), New York, 1982

    Google Scholar 

  21. Stanley H.E., “Introduction to Phase Transitions and Critical Phenomena”, Oxford Univ. Press, New York, 1971

    Google Scholar 

  22. Beysens D., in “Phase Transitions”, Cargese 1980, Ed. M. Levy, J.C. Le Guillou, J. Zinn-Justin (Plenum), New York, 1982, 25–62

    Google Scholar 

  23. Beysens D., in “Material Sciences in Space”, Ed. Feuerbacher B., Hamacher H. and Naumann B., Springer Berlin (1986), 191

    Chapter  Google Scholar 

  24. Beysens D., “Critical Point Phenomena in Fluids”, Proc. 4th European Symposium on Materials Science under Microgravity, Madrid (1983), ESA-SP-191, 367–376

    Google Scholar 

  25. Huijser P.H., Michels A.C. and Trappeniem N.J., “Optical Investigation of Critical Behaviour in Simple Fluids at Reduced Gravity”, Proc. 4th European Symposium on Materials Science under Microgravity”, Madrid (1983), ESA-SP-191, 377–393

    Google Scholar 

  26. Findenegg Q.H., “Adsorption behaviour of pure fluids near the gas-liquid critical point”, Proc. 4th European Symposium on Materials Science under Microgravity, Madrid (1983), ESA-SP-191, 385–391

    Google Scholar 

  27. Straub J. and Schiebener P., to appear

    Google Scholar 

  28. Sengers J.V., van Leeuwen J.M.J. “Gravity effects on critical fluctuations in gases”, J. Phys. Chem. 88 (1984), 6479

    Article  Google Scholar 

  29. van Leeuwen J.M.J., Sengers J.V., “Gravity effects on the correlation length in gases near the critical point”, Physica 128A, 131 (1984), 99

    Article  Google Scholar 

  30. Wilson K.G. and Kogut J.B., Phys. Rev. 12 (1974), 75

    Google Scholar 

  31. See e.g. Sengers J.V., “Transport properties of fluids near critical points”, Int. J. of Thermodyn. 6 (1985), 203 and ref. therein

    Article  Google Scholar 

  32. Kawasaki K., in “Phase transitions and critical phenomena”, Ed. C. Domb and M.S. Green, Academic Press, New York, 1976

    Google Scholar 

  33. Jany P. and Straub J., “Thermal diffusivity of fluids in a broad region around the critical point”, Int. J. of Thermophysics, Vol.8, 165–180 (1987)

    Article  Google Scholar 

  34. See e.g. Beysens D., Gbadamassi M. and Moncef-Bouanz, “New developments of binary fluids under shear flow”, Phys. Rev. A28 (1983), 2491 and ref. therein

    Google Scholar 

  35. Onuki A., Yamasaki K. and Kawasaki K., “Light scattering by critical fluids under shear flow”, Ann. Phys. N.Y. 131 (1981), 217

    Article  Google Scholar 

  36. Cahn J.W., “Spinodal Decomposition”, Trans. Metall. Soc. AIME 242 (1968), 166

    Google Scholar 

  37. See e.g. Gunton J.D., San-Miguel M. and Sahni P. in “Phase transitions and critical phenomena”, vol. 8, Ed. C. Domb and J.L. Lebowitz (Academic, New York), 1983

    Google Scholar 

  38. Siggia E.D., “Late stages of spinodal decomposition in binary mixtures”, Phys. Rev. A20 (1979), 595

    Google Scholar 

  39. Cahn J.W., “Critical point wetting”, J. Chem. Phys. 66 (1977), 3667

    Google Scholar 

  40. Cahn J.W., For a review, see e.g. “Fundamental problems in statistical mechanics VI”, Ed. E.G.D. Cohen (Elsevier, Amsterdam), 1985

    Google Scholar 

  41. See e.g. Moldover M.R. and Schmidt J.W., “Wetting, multilayer-adsorption, and in­terfaces phase transitions”, Physica 351 (1984)

    Google Scholar 

  42. Beaglehole D., “Adsorption and wetting at the liquid-vapour interface of cyclohexane-methanol-water mixtures”, J. Phys. Chem. 87 (1983), 4749

    Article  Google Scholar 

  43. Fisher M.E. and de Gennes P.G., “Phénomènes aux parois dans un mélange binaire critique”, C.R. Acad. Sci. Paris 287B (1978), 207

    Google Scholar 

  44. Beysens D. and Leibler S., “Observation of an anomalous adsorption in a critical binary fluid”, J. Phys. Lettres, Paris-43, L-133 (1982)

    Google Scholar 

  45. Franck C. and Schnatterly S.E., “New critical anomaly induced in a binary liquid mixture by a selectively adsorbing wall”, Phys. Rev. Lett. 48 (1982), 763

    Article  Google Scholar 

  46. Lipa J.A., “Lambda transition flight program” in “Microgravity science and applications”, Report on workshop 3–4 Dec. 1984, National Academic Press, Washington D.C. (1986), p. 265

    Google Scholar 

  47. Turner D.J., “Thermodynamics of high-temperature aqueous systems” in “Thermodynamics of aqueous systems with industrial applications”, Ed. S.A. Newman, 1980, ACS Symposium series n° 133, p. 653

    Chapter  Google Scholar 

  48. Wood R.H., Quint J.R., Grolier J-P.E., “Thermodynamics of a charged hard sphere in a compressible dielectric fluid”, J. Phys. Chem. 85, 1981, 3944

    Article  Google Scholar 

  49. Gates J.A., Wood R.H. and Quint J.R., “Experimental evidence for the remarkable behaviour of the partial molar heat capacity at infinite dilution of aqueous electrolytes at the critical point”, J. Phys. Chem. 86 (1982), 4948

    Article  Google Scholar 

  50. See e.g. Ramakrishnan J., Nagarajan N., Kumar A., Gopal E.S.R., Chandrasekhar P. and Ananthakrishna, “Critical behaviour of electrical resistivity in polar and non-polar binary liquid mixtures”, J. Chem. Phys. 68 (1978), 4098

    Article  Google Scholar 

  51. Straub J., “Dichtemessungen am kritische Punkt”, Thesis, Technische Universität München (1966), Habilitation Technische Universität, München (1977)

    Google Scholar 

  52. Straub J., “Kritische Phänomene in reinen Fluiden”, 18. Bunsen-Kolloquium, 15 Nov. 1983, Ed. J. Richter, Aachen

    Google Scholar 

  53. Sengers J.V., Moldover M.R., “Critical phenomena in space?” Z. Flugwiss. Weltraumforsch. 2 (1978), Heft 6, 371

    Google Scholar 

  54. Robert M., “Absence of phase separation for fluids in three dimensions”, Phys. Rev. Lett. 54 (1985), 444

    Article  Google Scholar 

  55. Chatterjee S., Vani V., Guha S. and Gopal E.S.R., “Critical wetting phenomena: observation of hydrodynamic instabilities”, J. Phys. Paris 46 (1985), 1533

    Google Scholar 

  56. Nitsche K., Straub J. and Lange R., “Isochoric specific heat of sulfur hexafluoride at the critical point — A Spacelab experiment for the German D-1 mission in 1985”, Proc. 5th European Symposium on Materials Science under Microgravity, Elmau (1984), ESA-SP-222, 335

    Google Scholar 

  57. Straub J., Lange R., Nitsche K. and Kemmerle K., “Isochoric specific heat of SF6 at the critical point: Laboratory results and outline of a Spacelab experiment for the D-l mission in 1985”, Int. J. Thermophysics 7 (1986), 343–356

    Article  Google Scholar 

  58. Nitsche K., Straub J., “The isochoric specific heat of sulfur hexafluoride SF6 at the critical point under microgravity conditions”, Proc. of the Symposium of the D-l mission, Norderney, to be published Nitsche K., Straub J., The critical “Hump” of Cv under microgravity — Results from the D-l Spacelab experiment “Wärmekapazität”, Proc. of the 6th European Symposium on Materials Science under Microgravity, Bordeaux (1986), ESA-SP-256, 109

    Google Scholar 

  59. Nitsche K., Straub J., “Die isochore Wärmekapazität am kritischen Punkt unter reduzierter Schwerkraft”, Naturwiss. 73 (1986), 370–373

    Article  Google Scholar 

  60. Nitsche K., Straub J., Lange R., “Ergebnisse des TEXUS 8 Experiments “Phasenumwandlung” — Forschungsbericht Luft und Raumfahrt BMFT (1984) — In preparation for publication

    Google Scholar 

  61. Messerschmidt E. and Straub J., Private communication (1985)

    Google Scholar 

  62. Klein H. and Wanders K., “Density distribution near gas/liquid critical point under reduced gravity”, Naturwiss. 73 (1986), 374–375

    Article  Google Scholar 

  63. Klein H., Wanders K. and Neuhaus D., “Holografic experiments: Results of Spacelab D-1”, Proc. of the 6th European Symposium on Materials Science under Microgravity, Bordeaux (1986), ESA-SP-256, 105

    Google Scholar 

  64. Baudry P. and Beysens D., private communication (1985)

    Google Scholar 

  65. Legros J.C. and Beysens D., private communication (1984)

    Google Scholar 

  66. Houessou C., Guenoun P., Gastaud R., Perrot F. and Beysens D., “Critical behaviour of the binary fluids cyclohexane-methanol, deuterated cyclohenaxe-methanol and of their isodensity mixture: Application to microgravity simulations and wetting phenomena”, Phys. Rev. A32 (1985), 1818

    Google Scholar 

  67. Beysens D., Guenoun P. and Perrot F., “Phase separation of critical binary fluids under microgravity: Comparison with isodensity conditions”, submitted to Phys. Rev. A Perrot F., Guenoun P. and Beysens D., “Physicochemical hydrodynamics: Interfacial phenomena”, Ed. M.G. Velarde and B. Nichols (Plenum, 1986) — in press Beysens D., Guenoun P. and Perrot F., “Phase separation in microgravity of binary fluids near a critical point”, Proc. of the 6th European Symposium of Materials Science under Microgravity, Bordeaux (1986), ESA-SP-256, 139

    Google Scholar 

  68. van Alstine J.M., Harris J.M., Snyder S., Curreri P.A., Bamberger S., Brooks D.E., “Separation of aqueous two-phase polymer systems in microgravity”, Proc. of the 5th European Symposium on Materials Science under Microgravity, Elmau (1984), ESA-SP-222, 309

    Google Scholar 

  69. Curreri P.A., van Alstine J.M., Brooks D.E., Bamberger S., Snyder R.S., “On the stability of high volume fraction immiscible dispersions in low gravity”, submitted to Metall. Trans. A

    Google Scholar 

  70. Turner D.J., “Electrolyte solutions near the critical point of water,” Proc. of the 6th European Symposium on Materials Science under Microgravity, Bordeaux (1986), ESA-SP-256, 125. Also paper in preparation for J. Chem. Sor. Faraday Trans.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 European Space Agency, Paris Cedex, France

About this chapter

Cite this chapter

Beysens, D., Straub, J., Turner, D.J. (1987). Phase Transitions and Near-Critical Phenomena. In: Walter, H.U. (eds) Fluid Sciences and Materials Science in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46613-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46613-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46615-1

  • Online ISBN: 978-3-642-46613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics