Skip to main content

Microbiology of Eutrophic (Ornithogenic and Hydrocarbon-Contaminated) Soil

  • Chapter
  • First Online:

Abstract

Antarctic soils are typically low in carbon, nitrogen and phosphorus. Ornithogenic and hydrocarbon-contaminated soils, however, could be considered eutrophic. In this chapter, we review the microbial composition of ornithogenic and hydrocarbon-contaminated soils. Ornithogenic soils form in soils under bird nesting sites. These include those that form under penguin colonies of coastal soils and under bird nests in coastal soils and on nunataks. The soils currently occupied by birds have high levels of C, N and P and a low C:N ratio. The diversity and abundance of microbes in the soils depends on whether they are currently occupied by birds have been abandoned or are adjacent to the colony. Bacteria dominate occupied soils with Firmicutes reported to be prevalent, but in abandoned soils, Proteobacteria are dominant. Among the nematodes Panagrolaimus is most commonly reported from ornithogenic soils. Extensive areas of growth of visible photosynthetic microbes occupy soils adjacent to ornithogenic soils. Prasiola spp and Phormidium spp. are the dominant algae and cyanobacteria, respectively, that are reported. Most investigations of hydrocarbon-contaminated Antarctic soils have focused on heterotrophic bacteria, with a few reports of fungi. Hydrocarbon spills on soils typically occur next to research stations and result in an increase in soil C and a high C:N ratio. The result is a shift in microbial communities towards hydrocarbon-degrading species, predominantly from the Proteobacteria phylum. Among the hydrocarbon-degrading bacteria isolated from Antarctic soils are members of the genera Pseudomonas, Sphingomonas and Rhodococcus. These genera have been observed widely in contaminated temperate soils and have the capability to degrade hydrocarbons. Filamentous fungi from the Ascomycota phylum commonly isolated from contaminated soils include those from the Cadophora, Trichoderma and Mortierella genera, but their ability to degrade hydrocarbons is not always known. There is limited knowledge on the effect of hydrocarbons on Archaea, invertebrates or photosynthetic microbes in hydrocarbon-contaminated Antarctic soil. Our knowledge of eutrophic soils of Antarctica is sparse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aislabie J, McLeod M, Fraser R (1998) Potential of biodegradation of hydrocarbons in soil from the Ross dependency, Antarctica. Appl Microbiol Biotechnol 49:210–214

    Article  CAS  Google Scholar 

  • Aislabie J, Fraser R, Duncan S, Farrell RL (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313

    Article  Google Scholar 

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38:265–1274

    Article  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soil. Extremophiles 10:171–179

    Article  CAS  PubMed  Google Scholar 

  • Aislabie J, Ryburn J, Sarmah A (2008) Hexadecane mineralization activity in ornithogenic soil from Seabee Hook, Cape Hallett, Antarctica. Polar Biol 31:421–428

    Article  Google Scholar 

  • Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross sea region, Antarctica. Can J Microbiol 55:21–36

    Article  CAS  PubMed  Google Scholar 

  • Aislabie JM, Ryburn J, Gutierrez-Zamora M-L, Rhodes P, Hunter D, Sarmah AK, Barker GM, Farrell RL (2012) Hexadecane mineralization activity in hydrocarbon-contaminated soils of Ross sea region Antarctica may require nutrients and inoculation. Soil Biol Biochem 45:49–60

    Article  CAS  Google Scholar 

  • Akiyama M, Kanda H, Ohyama Y (1986) Allelopathic effect of penguin excrements and guanos on the growth of Antarctic soil algae. Memoirs Natl Inst Polar Res Ser E 37:11–16

    Google Scholar 

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56

    Article  CAS  PubMed  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross sea region and McMurdo dry valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette R (2006) Fungal diversity in soils and historic wood from the Ross sea region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Ayton JS (2009) Microbial diversity of soils from the Ross sea region of Antarctica. PhD Thesis, Univ Auckland, NZ

    Google Scholar 

  • Ayton J, Aislabie J, Barker G, Saul D, Turner S (2010) Crenarchaeota affiliated with Group 1.1b are prevalent in coastal mineral soils of the Ross sea region of Antarctica. Environ Microbiol 12:689–703

    Article  CAS  PubMed  Google Scholar 

  • Banks JC, Cary SC, Hogg ID (2009) The phylogeography of Adélie penguin faecal flora. Environ Microbiol 11:577–588

    Article  CAS  PubMed  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterisation of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microbial Ecol 43:44–54

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Cary SC, Adams BJ, Hacker AL, Aislabie JM (2006) Co-variation in soil biodiversity and biogeography in northern and southern Victoria land, Antarctica. Antarct Sci 18:535–548

    Article  Google Scholar 

  • Bej AK, Saul DJ, Aislabie J (2000) Cold tolerance of alkane-degrading bacteria isolated from soil near Scott base, Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Blanchette RA, Held BW, Arenz BE, Jurgens JA, Bates NJ, Duncan SM, Farrell RL (2010) An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microbial Ecol 60:29–38

    Article  Google Scholar 

  • Bogan BW, Sullivan WR, Kayser KJ, Deer KD, Aldrich HC, Paterek JR (2003) Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocabonoclastic, aerobic squalene-degrading bacterium isolated from oilfield soils. Int J Syst Evol Microbiol 53:1389–1395

    Article  CAS  PubMed  Google Scholar 

  • Bölter M, Blume H-P, Schneider D, Beyer L (1997) Soil properties and distribution of invertebrates and bacteria from King George Island (Arctowski station), maritime Antarctic. Polar Biol 18:295–304

    Article  Google Scholar 

  • Bowman JP, Cavanagh J, Austin JJ, Sanderson K (1996) Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol 46:841–848

    Article  CAS  PubMed  Google Scholar 

  • Broady PA (1979a) The terrestrial algae of Signy Island, South Orkney Islands. British Antarct Surv Sci Rep 98:117

    Google Scholar 

  • Broady PA (1979b) A preliminary survey of the terrestrial algae for the Antarctic Peninsula and South Georgia. British Antarct Surv Bull 48:47–70

    Google Scholar 

  • Broady PA (1982) Ecology of non-marine algae at Mawson Rock, Antarctica. Nova Hedwigia 36:209–229

    Google Scholar 

  • Broady P (1983) The Antarctic distribution and ecology of the terrestrial, chlorophytan alga Prasiococcus calcarius (Boye Petersen) Vischer. Polar Biol 1:211–216

    Article  Google Scholar 

  • Broady PA (1985) Mapping non-marine algal vegetation of Victoria land: preliminary results, aims and significance. NZ Antarct Rec 6(3):3–32

    Google Scholar 

  • Broady PA (1986) Ecology and taxonomy of the terrestrial algae of the Vestfold hills. Acad Press Sydney 165–202

    Google Scholar 

  • Broady PA (1987) A floristic survey of algae at four locations in northern Victoria land. NZ Antarct Rec 7:8–19

    Google Scholar 

  • Broady PA (1989a) Survey of algae and other terrestrial biota at Edward VII Peninsula, Marie Byrd land. Antarct Sci 1:215–224

    Google Scholar 

  • Broady PA (1989b) Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three ice-free regions on Ross Island, Antarctica. Hydrobiologia 172:77–95

    Article  Google Scholar 

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335

    Article  Google Scholar 

  • Cavacini P (2001) Soil algae from northern Victoria land (Antarctica). Polar Biosci 14:45–60

    Google Scholar 

  • Chong CW, Dunn MK, Convey P, Tan GYA, Wong RCS, Tan IKP (2009a) Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biol 32:1571–1582

    Article  Google Scholar 

  • Chong CW, Tan GYA, Wong RCS, Riddle MJ, Tan IKP (2009b) DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey station, Antarctica. Polar Biol 32:853–860

    Article  Google Scholar 

  • Cocks MP, Newton IP, Stock WD (1998) Bird effects on organic processes in soils from five microhabitats on a nunatak with and without breeding snow petrels in Dronning Maud land, Antarctica. Polar Biol 20:112–120

    Article  Google Scholar 

  • Cocks MP, Harris JM, Steele WK, Balfour DA (1999) The influence of ornithogenic products on the nutrient status of soils surrounding nests on nunataks in Dronning Maud Land, Antarctica. Polar Res 18:19–26

    Google Scholar 

  • de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • Eckford R, Cook FD, Saul D, Aislabie J, Foght J (2002) Free-living nitrogen-fixing bacteria from Antarctic soils. Appl Environ Microbiol 68:5181–5185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis DH (1980) Thermophilous fungi isolated from some Antarctic and sub-Antarctic soils. Mycologia 72:1033–1036

    Article  Google Scholar 

  • Ferguson SH, Franzmann PD, Revill AT, Snape I, Rayner JL (2003) The effects of nitrogen and water on mineralisation of hydrocarbons in diesel-contaminated terrestrial soils. Cold Regions Sci Technol 37:197–212

    Article  Google Scholar 

  • Fermani P, Mataloni G, Van de Vijver B (2007) Soil microalgal communities on an Antarctic active volcano (Deception Island, South Shetlands). Polar Biol 30:1381–1393

    Article  Google Scholar 

  • Ferrari B, Zhang C, van Dorst J (2011) Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and low nutrient media approach. Front Microbiol 2:1–14

    Google Scholar 

  • Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of MacRobertson and Enderby lands, Antarctica. Polar Biol 4:81–88

    Article  Google Scholar 

  • Foong CP, Ling CMWV, Gonález M (2010) Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Sci 4:263–273

    Article  Google Scholar 

  • González Garraza G, Mataloni G, Fermani P (2011) Ecology of algal communities of different soil types from Cierva point, Antarctic Peninsula. Polar Biol 34:339–351

    Article  Google Scholar 

  • Heatwole H, Saenger P, Spain A, Kerry E, Donelan J (1989) Biotic and chemical characteristics of some soils from Wilkes land, Antarctica. Antarct Sci 1:225–234

    Article  Google Scholar 

  • Hirano M (1965) Freshwater algae of the Antarctic regions. Monographiae Biologicae 15:127–193

    Article  Google Scholar 

  • Hofstee EH, Balks MR, Petchey F, Campbell DI (2006) Soils of Seabee Hook, Cape Hallett, northern Victoria Land, Antarctica. Antarct Sci 18:473–486

    Article  Google Scholar 

  • Hoshiai T, Matsuda T (1979) Adélie penguin rookeries in the Lutzow-Holm Bay area and relation of rookery to algal biomass in soil. Mem Natl Inst Polar Res Spec Issue 11:140–152

    CAS  Google Scholar 

  • Hughes KA, Bridge P, Clark MS (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ 372:539–548

    Article  CAS  PubMed  Google Scholar 

  • Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination in the Vestfold hills and MacRobertson land Antarctica. Polar Biol 10:423–430

    Google Scholar 

  • Kerry E (1993) Bioremediation of experimental petroleum spills on mineral soils in the Vestfold hills, Antarctica. Polar Biol 13:163–170

    Article  Google Scholar 

  • Kim M, Kennicutt MC II, Qian Y (2006) Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo station, Antarctica. Mar Pollut Bull 52:1585–1590

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-G, Choi DH, Hyun S, Cho BC (2007) Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413

    Article  CAS  PubMed  Google Scholar 

  • Kol E (1970) Algae from the soil of the Antarctic. Acta Bot Acad Sci Hung 16:313–319

    Google Scholar 

  • Lee CS, Kim KK, Aslam Z, Lee S-T (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57:1775–1779

    Article  PubMed  Google Scholar 

  • Ling HU, Seppelt RD (1998) Non-marine algae and cyanobacteria of the Windmill Islands region, Antarctica with descriptions of 2 new species. Algol Stud 89:49–62

    Google Scholar 

  • Longton RE (1973) A classification of terrestrial vegetation near McMurdo sound, continental Antarctica. Can J Bot 51:2339–2346

    Article  Google Scholar 

  • Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465

    Article  CAS  PubMed  Google Scholar 

  • Maslen NR (1979) Additions to the nematode fauna of the Antarctic region with keys to Taxa. Br Antarct Surv Bull 49:207–229

    Google Scholar 

  • Mataloni G, Tell G (2002) Microalgal communities from ornithogenic soils at Cierva point, Antarctic Peninsula. Polar Biol 25:488–491

    Article  Google Scholar 

  • Moniz MBJ, Rindi F, Novis PM, Broady PA, Guiry MD (2012) Molecular phylogeny of Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. J Phycol 48:940–955

    Article  Google Scholar 

  • Orchard VA, Corderoy DM (1983) Influence of environmental factors on the decomposition of penguin guano in Antarctica. Polar Biol 1:199–204

    Article  Google Scholar 

  • Pietr SJ (1986) The physiological groups of microorganisms in different soils at Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Polish Polar Res 7:395–406

    Google Scholar 

  • Porazinska DL, Wall DH, Virginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574

    Google Scholar 

  • Powell SM, Ma WK, Siciliano SD (2006) Isolation of denitrifying bacteria from hydrocarbon-contaminated Antarctic soil. Polar Biol 30:69–74

    Article  Google Scholar 

  • Pugh GHF, Allsopp D (1982) Microfungi on Signy Island, South Orkney Islands. Br Antarct Surv Bull 57:56–67

    Google Scholar 

  • Ramsay AJ, Stannard RE (1986) Numbers and viability of bacteria in ornithogenic soils of Antarctica. Polar Biol 5:195–198

    Article  Google Scholar 

  • Roser DJ, Seppelt RD, Ashbolt N (1993) Microbiology of ornithogenic soils from the Windmill Islands, Budd Coast, Continental Antarctica: microbial biomass distribution. Soil Biol Biochem 25:165–175

    Article  Google Scholar 

  • Rudolph ED (1963) Vegetation of Hallett Station area, Victoria Land, Antarctica. Ecology 44:585–586

    Article  Google Scholar 

  • Saul DJ, Aislabie J, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  PubMed  Google Scholar 

  • Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400

    Article  Google Scholar 

  • Smykla J, Wolek J, Barcikowski A (2007) Zonation of vegetation related to penguin rookeries on King George Island, maritime Antarctic. Arct Antarct Alp Res 39:143–151

    Article  Google Scholar 

  • Sohlenius B, Boström S (2008) Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol 31:817–882

    Article  Google Scholar 

  • Sohlenius B, Boström S (2009) Distribution and population structure of two bacterial-feeding nematode genera in ice-free areas in East Antarctica. Nematology 11:189–201

    Article  Google Scholar 

  • Spaull VW (1973) Distribution of nematodes in the maritime Antarctic. Br Antarct Surv Bull 37:1–6

    Google Scholar 

  • Speir TW, Cowling JC (1984) Ornithogenic soils of the Cape Bird Adélie penguin rookeries, Antarctica. Polar Biol 2:199–205

    Article  Google Scholar 

  • Strunecký O, Elster J, Komárek J (2011) Taxonomic revision of the freshwater cyanobacterium “Phormidium” murrayi = Wilmottia murrayi. Fottea 11:57–71

    Google Scholar 

  • Sun L, Zhu R, Xie Z, Xing G (2002) Emissions of nitrous oxide and methane from Antarctic tundra: role of penguin dropping deposition. Atmos Environ 36:4977–4982

    Article  CAS  Google Scholar 

  • Syroechkovsky EE (1959) The role of animals in the formation of primary soils under the conditions of circumpolar regions of the Earth (Antarctica). Zoologichesky Zh 38:1770–1775

    Google Scholar 

  • Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biol 17:405–417

    Article  Google Scholar 

  • Tscherko D, Bolter M, Beyer L, Chen J, Elster J, Kandeler E, Kuhn D, Blume H-P (2003) Biomass and enzyme activity of two soil transects at King George Island, maritime Antarctica. Arct Antarct Alp Res 35:34–47

    Article  Google Scholar 

  • Ugolini FC (1972) Ornithogenic soils of Antarctica. Antarct Res Ser 20:181–193

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2007) Biosurfactant production of Antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol 54:136–141

    Article  CAS  PubMed  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA, de Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari Z, Labbe D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:41–150

    Google Scholar 

  • Wicklow DT (1968) Aspergillus fumigatus fresenius isolated from ornithogenic soil collected at Hallett Station, Antarctica. Can J Microbiol 14:717–719

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Yin X, Lin J, Sun L, You Z, Wang P, Wang F (2005) Chitinase genes in lake sediments of Ardley Island, Antarctica. Appl Environ Microbiol 71:7904–7909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeates GW, Scott MB, Chown SL, Sinclair BJ (2009) Changes in soil nematode populations indicate an annual life cycle at Cape Hallett, Antarctica. Pedobiologia 52:375–386

    Article  Google Scholar 

  • Zdanowski MK, Weglenski P, Golik P, Sasin JM, Borsuk P, Zmuda MJ, Stankovic A (2004) Bacterial diversity in Adélie penguin (Pygoscelis adeliae), guano: molecular and morpho-physiological approaches. FEMS Microbiol Ecol 50:163–173

    Article  CAS  PubMed  Google Scholar 

  • Zdanowski MK, Zmuda MJ, Zwolska I (2005) Bacterial role in the decomposition of marine-derived material (penguin guano) in terrestrial maritime Antarctic. Soil Biol Biochem 37:581–595

    Article  CAS  Google Scholar 

  • Zhu R, Ma D, Ding W, Bai B, Liu Y, Sun J (2011) Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables. Sci Total Environ 409:3789–3800

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank colleagues Drs P. Convey, BJ Adams and B. Arenz for advice on the content of this chapter, and Dr Julia Foght for peer review. This work was supported by funding from the Ministry of Business Innovation and Employment (C09X1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackie M. Aislabie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aislabie, J.M., Novis, P.M., Ferrari, B. (2014). Microbiology of Eutrophic (Ornithogenic and Hydrocarbon-Contaminated) Soil. In: Cowan, D. (eds) Antarctic Terrestrial Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45213-0_6

Download citation

Publish with us

Policies and ethics