Skip to main content

Deep Relational Machines

  • Conference paper
Book cover Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8227))

Included in the following conference series:

Abstract

Deep learning methods that comprise a new class of learning algorithms give state-of-the-art performance. We propose a novel methodology to learn deep architectures and refer to it as a deep relational machine (DRM). A DRM learns the first layer of representation by inducing first order Horn clauses and the successive layers are generated by utilizing restricted Boltzmann machines. It is characterised by its ability to capture structural and relational information contained in data. To evaluate our approach, we apply it to challenging problems including protein fold recognition and detection of toxic and mutagenic compounds. The experimental results demonstrate that our technique substantially outperforms all other approaches in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hinton, G.E., Salkhutdinov, R.: Reducing the dimensionality of data with Neural Networks. Science 33, 504–507 (2006)

    Article  Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Adv. in Neu. Infor. Processing Systems 19, pp. 153–160. MIT Press (2007)

    Google Scholar 

  3. McCarthy, J.: Programs with common sense. In: Proc. of Teddington Conf. on the Mechanization of Thought Processes, pp. 75–91. Her Majesty’s Stationery Office, London (1959)

    Google Scholar 

  4. Kramer, S., Lavrac, N., Flach, P.: Propositionalisation approaches to Relational Data Mining. In: Dzeroski, S., Larac, N. (eds.) Relational Data Mining, pp. 262–291. Springer, Berlin (2001)

    Chapter  Google Scholar 

  5. Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.J.E.: Support Vector Inductive Logic Programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Landwehr, N., Passerini, A., Raedt, L., Frasconi, P.: kFOIL: Learning simple relational kernels. In: Proc. of the Nat. Conf. on Artificial Intelligence (AAAI), vol. 21, pp. 389–394 (2006)

    Google Scholar 

  7. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cognitive. Sci. (9), 147–169 (1985)

    Google Scholar 

  8. Laer, W.V., de Raedt, L., Dzeroski, S.: On multi-class problems and discretization in Iductive Logic Programming. In: Proc. of the 10th Int. Symposium on Foundations of Intelligent Systems, pp. 277–286 (1997)

    Google Scholar 

  9. Lodhi, H., Muggleton, S., Sternberg, M.J.E.: Learning large margin first order decision lists for multi-class classification. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 168–183. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)

    Article  Google Scholar 

  11. Debnath, A.K., de Compadre, R.L.L., Debnath, G., Schusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatics nito compounds. correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991)

    Article  Google Scholar 

  12. Richard, A., Williams, C.: Distributed structure-searchable toxicity (DSSTox) public database network: A proposal. Mutat. Res. 499(1), 27–52 (2002)

    Article  Google Scholar 

  13. Cootes, A.P., Muggleton, S., Sternberg, M.J.: The automatic discovery of structural principles describing protein fold space. J. Mol. Biol. 330(4), 839–850 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lodhi, H. (2013). Deep Relational Machines. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42042-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42041-2

  • Online ISBN: 978-3-642-42042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics