Skip to main content

Landmark Selection for Isometric Feature Mapping Based on Mixed-Integer Optimization

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8234))

Abstract

Isometric feature mapping (Isomap) demonstrated noteworthy performance for nonlinear dimensionality reduction in a wide range of application domains. To improve the scalability of the algorithm a fast variant, called Landmark Isomap (L-Isomap), has been proposed in which time-consuming computations are performed on a subset of points referred to as landmarks. In this paper we present a novel method for landmark selection to be framed within the L-Isomap procedure. It is based on a mixed-integer problem aimed at finding a set of landmarks which are representative of dense regions of points in the input space which mostly contain samples of the same class. The optimization model is solved by a heuristic algorithm based on Lagrangian relaxation with subgradient method. Computational experiments performed on benchmark data sets highlighted the effectiveness of the proposed landmark selection algorithm which, combined with L-Isomap, provided promising results in terms of classification accuracy and computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolliffe, I.T.: Principal component analysis. Springer, New York (1986)

    Book  Google Scholar 

  2. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  3. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  4. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  6. Park, H.: ISOMAP induced manifold embedding and its application to Alzheimer’s disease and mild cognitive impairment. Neuroscience Letters 513, 141–145 (2012)

    Article  Google Scholar 

  7. Orsenigo, C., Vercellis, C.: Linear versus nonlinear dimensionality reduction for banks’ credit rating prediction. Knowledge-Based Systems 47, 14–22 (2013)

    Article  Google Scholar 

  8. Li, B., Zheng, C.H., Huang, D.S.: Locally linear discriminant embedding: An efficient method for face recognition. Pattern Recognition 41, 3813–3821 (2008)

    Article  MATH  Google Scholar 

  9. Jafari, A., Almasganj, F.: Using Laplacian eigenmaps latent variable model and manifold learning to improve speech recognition accuracy. Speech Communication 52, 725–735 (2010)

    Article  Google Scholar 

  10. Orsenigo, C., Vercellis, C.: A comparative study of nonlinear manifold learning methods for cancer microarray data classification. Expert Systems with Applications 40, 2189–2197 (2013)

    Article  Google Scholar 

  11. de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Advances in Neural Information Processing Systems, vol. 15, pp. 705–712 (2003)

    Google Scholar 

  12. Shi, L., He, P.-L., Liu, E.: An Incremental Nonlinear Dimensionality Reduction Algorithm Based on ISOMAP. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 892–895. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Iranmanesh, S.M., Mohammadi, M., Akbari, A., Nassersharif, B.: Improving Detection Rate in Intrusion Detection Systems Using FCM Clustering to Select Meaningful Landmarks in Incremental Landmark Isomap Algorithm. In: Zhou, Q. (ed.) ICTMF 2011. CCIS, vol. 164, pp. 46–53. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Gu, R.J., Xu, W.B.: An Improved Manifold Learning Algorithm for Data Visualization. In: Proc. of the 2006 International Conference on Machine Learning and Cybernetics, pp. 1170–1173 (2006)

    Google Scholar 

  15. Lei, Y.-K., Xu, Y., Zhang, S.-W., Wang, S.-L., Ding, Z.-G.: Fast ISOMAP Based on Minimum Set Coverage. In: Huang, D.-S., Zhang, X., Reyes García, C.A., Zhang, L. (eds.) ICIC 2010. LNCS, vol. 6216, pp. 173–179. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Lei, Y.K., You, Z.H., Dong, T., Jiang, Y.X., Yang, J.A.: Increasing reliability of protein interactome by fast manifold embedding. Pattern Recognition Letters 34, 372379 (2013)

    Article  Google Scholar 

  17. de Silva, V., Tenenbaum, J.B.: Sparse multidimensional scaling using landmark points. Technical Report, Stanford University (2004)

    Google Scholar 

  18. Orsenigo, C., Vercellis, C.: An effective double-bounded tree-connected Isomap algorithm for microarray data classification. Pattern Recognition Letters 33, 9–16 (2012)

    Article  Google Scholar 

  19. Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 35, 1098–1107 (2005)

    Article  Google Scholar 

  20. Orsenigo, C., Vercellis, C.: Kernel ridge regression for out-of-sample mapping in supervised manifold learning. Expert Systems with Applications 39, 7757–7762 (2012)

    Article  Google Scholar 

  21. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Management Science 27, 1–18 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Burak Eksioglu, B., Demirerb, R., Capar, I.: Subset selection in multiple linear regression: a new mathematical programming approach. Computers & Industrial Engineering 49, 155–167 (2005)

    Article  Google Scholar 

  23. Bache, K., Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2013), http://archive.ics.uci.edu/ml

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orsenigo, C., Vercellis, C. (2013). Landmark Selection for Isometric Feature Mapping Based on Mixed-Integer Optimization. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2013. Lecture Notes in Computer Science(), vol 8234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41550-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41550-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41549-4

  • Online ISBN: 978-3-642-41550-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics