Skip to main content

Laser-Based Optical Methods for the Sensory Ecology of Flow Sensing: From Classical PIV to Micro-PIV and Beyond

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

This chapter presents an overview of techniques for laser-based, noncontact fluid flow measurements, and their application to real datasets. Particular consideration is given to particle image velocimetry (PIV)-techniques, from the usual macro-scale PIV, through meso-scale PIV, to micro-PIV, thereby spanning the range from decimeter to micrometer scales. We compare the advantages and limitations of these techniques. The specific requirements of sensory ecology and sensory physiology, as well as the 3D-morphological nature of the organisms studied led us to conclude that the techniques that are used in water are ill-suited for several key tasks when dealing with terrestrial organisms. We therefore propose an innovative mixed technology that exploits the advantages of both standard and micro-PIV techniques while avoiding their main limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • Alharbi AY, Sick V (2010) Investigation of boundary layers in internal combustion engines using a hybrid algorithm of high speed micro-PIV and PTV. Exp Fluids 49:949–959. doi:10.1007/s00348-010-0870-8

    Article  CAS  Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs II Mechanical properties of spider trichobothria (Cupiennius salei Keys). Philos Trans R Soc Lond B Biol Sci 340:445–461

    Article  Google Scholar 

  • Bathellier B, Steinmann T, Barth FG, Casas J (2012) Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency. J R Soc Interface 9:1131–1143. doi:10.1098/rsif-2011-0690

    Article  PubMed Central  PubMed  Google Scholar 

  • Bechert DW, Bruse M, Hage W (2000) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28:403–412. doi:10.1007/s003480050400

    Article  Google Scholar 

  • Bechert D, Bartenwerfer M (1989) The viscous flow on surfaces with longitudinal ribs. J Fluid Mech 206:105–129

    Article  Google Scholar 

  • Bitsch L, Olesen LH, Westergaard CH, Bruus H, Klank H, Kutter JP (2005) Micro particle-image velocimetry of bead suspensions and blood flows. Exp Fluids 39:505–511

    Article  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757

    CAS  PubMed  Google Scholar 

  • Blickhan R, Krick C, Zehren D, Nachtigall W (1992) Generation of a vortex chain in the wake of a subundulatory swimmer. Naturwissenschaften 79:220–221

    Article  Google Scholar 

  • Boek ES, Padding JT, Anderson VJ, Briels WJ, Crawshaw JP (2006) Flow of entangled wormlike micellar fluids: mesoscopic simulations, rheology and μ-PIV experiments. J Non-Newton Fluid 146:11–21

    Article  Google Scholar 

  • Bown MR, Meinhart CD (2006) AC electroosmotic flow in a DNA concentrator. Microfluid Nanofluid 2:513–523. doi:10.1007/s10404-006-0097-4

    Article  CAS  Google Scholar 

  • Bown MR, MacInnes JM, RWK Allen (2006) Three-component micro-PIV using the continuity equation and a comparison of the performance with that of stereoscopic measurements. Exp Fluids 42:197–205. doi:10.1007/s00348-006-0229-3

    Article  Google Scholar 

  • Burgmann S, Van der Schoot N, Asbach C, Wartmann J, Lindken R (2011) Analysis of tracer particle characteristics for micro PIV in wall-bounded gas flows. La Houille Blanche 4:55–61. doi:10.1051/lhb/2011041

    Article  Google Scholar 

  • Casas J, Dangles O (2010) Physical ecology of fluid flow sensing in arthropods. Annu Rev Entomol 55:505–520. doi:10.1146/annurev-ento-112408-085342

    Article  CAS  PubMed  Google Scholar 

  • Casas J, Liu C, Krijnen G (2013) Biomimetic flow sensors encyclopedia. Nanotechnology 2013:264–276

    Google Scholar 

  • Casas J, Steinmann T, Dangles O (2008) The aerodynamic signature of running spiders. PLoS ONE 3:e2116. doi:10.1371/journal-pone-0002116

    Article  PubMed Central  PubMed  Google Scholar 

  • Casas J, Steinmann T, Krijnen G (2010) Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors. J R Soc Interface 7:1487–1495. doi:10.1098/rsif-2010-0093

    Article  PubMed Central  PubMed  Google Scholar 

  • Catton KB, Webster DR, Brown J, Yen J (2007) Quantitative analysis of tethered and free-swimming copepodid flow fields. J Exp Biol 210:299–310. doi:10.1242/jeb-02633

    Article  PubMed  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342. doi:10.1242/jeb-01982

    Article  PubMed  Google Scholar 

  • Cierpka C, Rossi M, Segura R, Mastrangelo F, Kähler CJ (2011) A comparative analysis of the uncertainty of astigmatism-μPTV, stereo-μPIV and μPIV. Exp Fluids 52:605–615. doi:10.1007/s00348-011-1075-5

    Article  Google Scholar 

  • Cummings EB (2000) An image processing and optimal nonlinear filtering technique for particle image velocimetry in microflows. Exp Fluids 29(1):S42–S50

    Article  Google Scholar 

  • Curtin DM, Newport DT, Davies MR (2006) Utilising μ-PIV and pressure measurements to determine the viscosity of a DNA solution in a microchannel. Exp Therm Fluid Sci 30:843–852

    Article  CAS  Google Scholar 

  • Dangles O, Steinmann T, Pierre D, Vannier F, Casas J (2008) Relative contributions of organ shape and receptor arrangement to the design of cricket’s cercal system. J Comp Physiol A 194:653–663. doi:10.1007/s00359-008-0339-x

    Article  Google Scholar 

  • Denissenko P, Lukaschuk S, Breithaupt T (2007) The flow generated by an active olfactory system of the red swamp crayfish. J Exp Biol 210:4083–4091. doi:10.1242/jeb-008664

    Article  CAS  PubMed  Google Scholar 

  • Devasenathipathy S, Santiago JG, Wereley ST, Meinhart CD, Takehara K (2003) Particle imaging techniques for microfabricated fluidic systems. Exp Fluids 34:504–514

    Article  Google Scholar 

  • Devasenathipathy S, Santiago JG (2003) Electrokinetic flow diagnostics. In: Breuer K (ed) Micro- and Nano-scale diagnostic techniques. Springer, New York, pp 113–144

    Google Scholar 

  • Eichler C, Sattelmayer T (2011) Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV. Exp Fluids 52:347–360. doi:10.1007/s00348-011-1226-8

    Article  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526. doi:10.1007/s00359-002-0326-6

    Article  CAS  Google Scholar 

  • Fertin A, Casas J (2006) Efficiency of antlion trap construction. J Exp Biol 209:3510–3515. doi:10.1242/jeb-02401

    Article  PubMed  Google Scholar 

  • Fertin A, Casas J (2007) Orientation towards prey in antlions: efficient use of wave propagation in sand. J Exp Biol 210:3337–3343. doi:10.1242/jeb-004473

    Article  PubMed  Google Scholar 

  • García-Mayoral R, Jiménez J (2011) Drag reduction by riblets. Philos T Roy Soc A 369(1940):1412–1427. doi:10.1098/rsta-2010-0359

    Article  Google Scholar 

  • Gnatzy W, Heusslein R (1986) Digger wasp against crickets: I receptors involved in the antipredator strategies of the prey. Naturwissenschaften 73:212–215

    Article  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Hanke W, Wieskotten S, Niesterok B, Miersch L, Witte M, Brede M, Leder A et al (2012) Hydrodynamic perception in pinnipeds. Note N Fl Mech Mul D 119:255–270. doi:10.1007/978-3-642-28302-4_16

    Google Scholar 

  • Horiuchi K, Dutta P, Richards CD (2006) Experiment and simulation of mixed flows in a trapezoidal microchannel. Microfluid Nanofluid 3:347–358. doi:10.1007/s10404-006-0129-0

    Article  Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias I, Barth FG (1993) Dynamics of arthropod filiform hairs: I mathematical modelling of the hair and air motions. Philos Trans R Soc Lond B Biol Sci 340:423–440

    Article  Google Scholar 

  • Inoué S, Spring KR (1997) Video microscopy. Plenum, Oxford

    Book  Google Scholar 

  • Jacobs GA, Miller JP, Aldworth Z (2008) Computational mechanisms of mechanosensory processing in the cricket. J Exp Biol 211:1819–1828. doi:10.1242/jeb-016402

    Article  PubMed  Google Scholar 

  • Jin BJ, Yoo JY (2011) Visualization of droplet merging in microchannels using micro-PIV. Exp Fluids 52:235–245. doi:10.1007/s00348-011-1221-0

    Article  Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012) On the uncertainty of digital PIV and PTV near walls. Exp Fluids 52:1641–1656. doi:10.1007/s00348-012-1307-3

    Article  Google Scholar 

  • Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341. doi:10.1007/s00348-006-0167-0

    Article  Google Scholar 

  • Kämper G, Kleindienst HU (1990) Oscillation of cricket sensory hairs in a low-frequency sound field. J Comp Physiol A 167:193–200

    Article  Google Scholar 

  • Kim MJ, Beskok A, Kihm KD (2002) Electro-osmosis-driven micro-channel flows: A comparative study of microscopic particle image velocimetry measurements and numerical simulations. Exp Fluids 33:170–180

    Article  CAS  Google Scholar 

  • Kim BJ, Yoon SY, Lee KH, Sung HJ (2008) Development of a microfluidic device for simultaneous mixing and pumping. Exp Fluids 46:85–95. doi:10.1007/s00348-008-0541-1

    Article  Google Scholar 

  • Kloosterman A, Poelma C, Westerweel J (2010) Flow rate estimation in large depth-of-field micro-PIV. Exp Fluids 50:1587–1599. doi:10.1007/s00348-010-1015-9

    Article  Google Scholar 

  • Klopsch C, Kuhlmann HC, Barth FG (2012) Airflow elicits a spider’s jump towards airborne prey I Airflow around a flying blowfly. J R Soc Interface 9:2591–2602. doi:10.1098/rsif-2012-0186

    Article  PubMed Central  PubMed  Google Scholar 

  • Koehl MAR (2004) Biomechanics of microscopic appendages: functional shifts caused by changes in speed. J Biomech 37:789–795. doi:10.1016/j-jbiomech-2003-06-001

    Article  CAS  PubMed  Google Scholar 

  • Krijnen G, Dijkstra M, van Baar J, Shankar S, Kuipers W, de Boer J, Altpeter D, Lammerink T, Wiegerink R (2006) MEMS based hair flow-sensors as model systems for acoustic perception studies. Nanotechnology 17:84–89. doi:10.1088/0957-4484/17/4/013

    Article  Google Scholar 

  • Kumagai T, Shimozawa T, Baba Y (1998) The shape of windreceptor hairs of cricket and cockroach. J Comp Physiol A 183:187–192

    Article  Google Scholar 

  • Landolfa G, Jacobs MA (1995) Direction sensitivity of the filiform hair population of the cricket cercal system. J Comp Physiol A 177:759–766

    Google Scholar 

  • Lee SY, Wereley ST, Gui L, Qu W, Mudawar I (2002) Microchannel flow measurement using micro Particle Image Velocimetry. In: Proceedings of IMECE2002 ASME international mechanical engineering congress and exposition. New Orleans, Louisiana, 17–22 Nov 2002

    Google Scholar 

  • Lee SJ, Kim BH, Lee JY (2009) Experimental study on the fluid mechanics of blood sucking in the proboscis of a female mosquito. J Biomech 42:857–864. doi:10.1016/j-jbiomech-2009-01-039

    Article  PubMed  Google Scholar 

  • Lee SJ, Lee SH (2001) Flow field analysis of a turbulent boundary layer over a riblet surface. Exp Fluids 30:153–166. doi:10.1007/s003480000150

    Article  Google Scholar 

  • Li H, Olsen MG (2006) Micro PIV measurements of turbulent flow in square microchannels with hydraulic diameters from 200 μm to 640 μm. Int J Heat Fluid Flow 27:123–134. doi:10.1016/j-ijheatfluidflow-2005-02-003

    Article  Google Scholar 

  • Lima R, Wada S, Takeda M, Tsubota K, Yamaguchi T (2007) In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. J Biomech 40:2752–2757. doi:10.1016/j-jbiomech-2007-01-012

    Article  PubMed  Google Scholar 

  • Lindken R, Westerweel J, Wieneke B (2006) Stereoscopic micro particle image velocimetry. Exp Fluids 41:161–171. doi:10.1007/s00348-006-0154-5

    Article  Google Scholar 

  • Liu D, Garimella SV, Wereley ST (2005) Infrared micro-particle image velocimetry in silicon-based microdevices. Exp Fluids 38:385–392

    Article  CAS  Google Scholar 

  • Magal C, Dangles O, Caparroy P, Casas J (2006) Hair canopy of cricket sensory system tuned to predator signals. J Theor Biol 241:459–466. doi:10.1016/j-jtbi-2005-12-009

    Article  PubMed  Google Scholar 

  • Mansoor I, Stoeber B (2010) PIV measurements of flow in drying polymer solutions during solvent casting. Exp Fluids 50:1409–1420. doi:10.1007/s00348-010-1000-3

    Article  Google Scholar 

  • McHenry MJ, Strother JA, van Netten SM (2008) Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system. J Comp Physiol A 194:795–810. doi:10.1007/s00359-008-0350-2

    Article  Google Scholar 

  • Mead KS (2003) Fine-scale patterns of odor encounter by the antennules of mantis shrimp tracking turbulent plumes in wave-affected and unidirectional flow. J Exp Biol 206:181–193. doi:10.1242/jeb-00063

    Article  PubMed  Google Scholar 

  • Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814

    Article  CAS  Google Scholar 

  • Meinhart CD, Wereley ST (2003) The theory of diffraction-limited resolution in microparticle image velocimetry. Meas Sci Technol 14:1047–1053

    Article  CAS  Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (1999) PIV measurements of a microchannel flow. Exp Fluids 27:414–419

    Article  Google Scholar 

  • Mielnik MM (2003) Micro-PIV and its application to some BioMEMS related microfluidic flows. PHD Thesis. ISBN 82-471-6954-1

    Google Scholar 

  • Mielnik MM, Saetran LR (2006) Selective seeding for micro-PIV. Exp Fluids 41(155–159):1007. doi:10/s00348-005-0103-8

    Google Scholar 

  • Miller JP, Krueger S, Heys JJ, Gedeon T (2011) Quantitative characterization of the filiform mechanosensory hair array on the cricket cercus. PLoS ONE 6(11):e27873. doi:10.1371/journal-pone-0027873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moghtaderi B, Shames I, Djenidi L (2006) Microfluidic characteristics of a multi-holed baffle plate micro-reactor. Int J Heat Fluid Fl 27:1069–1077. doi:10.1016/j-ijheatfluidflow-2006-01-008

    Article  Google Scholar 

  • Morley EL, Steinmann T, Casas J, Robert D (2012) Directional cues in Drosophila melanogaster audition: structure of acoustic flow and inter-antennal velocity differences. J Exp Biol 215:2405–2413. doi:10.1242/jeb-068940

    Article  PubMed  Google Scholar 

  • Müller U, Heuvel B, Stamhuis E, Videler J (1997) Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J Exp Biol 200:2893–2906

    Google Scholar 

  • Natrajan VK, Yamaguchi E, Christensen KT (2006) Statistical and structural similarities between micro and macroscale wall turbulence. Microfluid Nanofluid 3:89–100. doi:10.1007/s10404-006-0105-8

    Article  Google Scholar 

  • Nguyen CV, Carberry J, Fouras A (2011) Volumetric-correlation PIV to measure particle concentration and velocity of microflows. Exp Fluids 52:663–677. doi:10.1007/s00348-011-1087-1

    Article  Google Scholar 

  • Nguyen CV, Fouras A, Carberry J (2010) Improvement of measurement accuracy in micro PIV by image overlapping. Exp Fluids 49:701–712. doi:10.1007/s00348-010-0837-9

    Article  Google Scholar 

  • Park J, Choi C, Kihm K (2004) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37:105–119. doi:10.1007/s00348-004-0790-6

    Google Scholar 

  • Patrick MJ, Chen CY, Frakes DH, Dur O, Pekkan K (2010) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV. Exp Fluids 50:887–904. doi:10.1007/s00348-010-0943-8

    Article  Google Scholar 

  • Pereira F, Lu J, Castaño-Graff E, Gharib M (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42:589–599. doi:10.1007/s00348-007-0267-5

    Article  CAS  Google Scholar 

  • Poelma C, Van der Heiden K, Hierck BP, Poelmann RE, Westerweel J (2010) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7:91–103. doi:10.1098/rsif-2009-0063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry, a practical guide. Springer, Berlin

    Book  Google Scholar 

  • Raghavan RV, Friend JR, Yeo LY (2009) Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies. Microfluidic Nanofluidic 8:73–84. doi:10.1007/s10404-009-0452-3

    Article  Google Scholar 

  • Reidenbach MA, George N, Koehl MAR (2008) Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. J Exp Biol 211:2849–2858. doi:10.1242/jeb-016394

    Article  PubMed  Google Scholar 

  • Rossi M, Segura R, Cierpka C, Kähler CJ (2011) On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp Fluids 52(4):1063–1075. doi:10.1007/s00348-011-1194-z

    Article  Google Scholar 

  • Samarage CR, Carberry J, Hourigan K, Fouras A (2011) Optimisation of temporal averaging processes in PIV. Exp Fluids 52:617–631. doi:10.1007/s00348-011-1080-8

    Article  Google Scholar 

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319. doi:10.1007/s003480050235

    Article  CAS  Google Scholar 

  • Sato Y, Hishida K (2006) Electrokinetic effects on motion of submicron particles in microchannel. Fluid Dyn Res 38:787–802. doi:10.1016/j-fluiddyn-2006-04-003

    Article  Google Scholar 

  • Sato Y, Inaba S, Hishida K, Maeda M (2003) Spatially averaged time-resolved particle-tracking velocimetry in microspace considering Brownian motion of submicron fluorescent particles. Exp Fluids 35:167–177. doi:10.1007/s00348-003-0643-8

    Article  Google Scholar 

  • Shimozawa T, Kanou M (1984) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155:495–505

    Article  Google Scholar 

  • Shimozawa T, Kumagai T, Baba Y (1998) Structural scaling and functional design of the cercal wind-receptor hairs of cricket. J Comp Physiol A 183:171–186

    Article  Google Scholar 

  • Shimozawa T, Murakami J, Kumagai T (2003) Cricket wind receptors: thermal noise for the highest sensitivity known. In: Barth FB, Humphrey JAC, Secomb T (eds) Sensors and sensing in biology and engineering. Springer, Berlin, pp 145–157

    Chapter  Google Scholar 

  • Snoeyink C, Wereley S (2013) A novel 3D3C particle tracking method suitable for microfluidic flow measurements. Exp Fluids 54:1453. doi:10.1007/s00348-012-1453-7

    Article  Google Scholar 

  • Stamhuis EJ, Videler JJ, Duren LAV, Mu UK (2002) Applying digital particle image velocimetry to animal-generated flows: traps, hurdles and cures in mapping steady and unsteady flows in Re regimes between 10–2 and 105. Exp Fluids 33:801–813. doi:10.1007/s00348-002-0520-x

    Article  Google Scholar 

  • Steinmann T, Casas J, Krijnen G, Dangles O (2006) Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages. J Exp Biol 209:4398–4408. doi:10.1242/jeb-02506

    Article  CAS  PubMed  Google Scholar 

  • Sterbing-D’Angelo S, Chadha M, Chiu C, Falk B, Xian W, Barcelo J, Zook JM et al (2011) Bat wing sensors support flight control. PNAS 108:11291–11296. doi:10.1073/pnas-1018740108

    Article  PubMed  Google Scholar 

  • Sun C, Lee HC, Kao RX (2011) Diagnosis of oscillating pressure-driven flow in a microdiffuser using micro-PIV. Exp Fluids 52:23–35. doi:10.1007/s00348-011-1204-1

    Article  Google Scholar 

  • Tautz J, Markl H (1979) Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behav Ecol Sociobiol 4:101–110

    Article  Google Scholar 

  • Walsh PA, Walsh EJ, Davies MRD (2007) On the out-of-plane divergence of streamtubes in planar mini-scale flow focusing devices. Int J Heat Fluid Fl 28:44–53. doi:10.1016/j-ijheatfluidflow-2006-05-006

    Article  Google Scholar 

  • Wang B, Demuren A, Gyuricsko E, Hu H (2010) An experimental study of pulsed micro-flows pertinent to continuous subcutaneous insulin infusion therapy. Exp Fluids 51:65–74. doi:10.1007/s00348-010-1033-7

    Article  Google Scholar 

  • Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42:557–576. doi:10.1146/annurev-fluid-121108-145427

    Article  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010a) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus) Part I: open water and heading towards a wall. J Exp Biol 213:3819–3831. doi:10.1242/jeb-040741

    Article  PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010b) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus), Part II: gliding parallel to a wall. J Exp Biol 213:3832–3842. doi:10.1242/jeb-040790

    Article  PubMed  Google Scholar 

  • Yan DG, Yang C, Huang XY (2006) Effect of finite reservoir size on electroosmotic flow in microchannels. Microfluid Nanofluid 3:333–340. doi:10.1007/s10404-006-0135-2

    Article  Google Scholar 

  • Yang CT, Chuang HS (2005) Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry. Exp Fluids 39:385–396. doi:10.1007/s00348-005-1022-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Steinmann .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 2.1 Summary of the different techniques, channel flow depth, and applications of micro-PIV from 20 papers on micro-PIV most pertinent to the scope of this review
Table 2.2 Advantages and limitations of both standard macro-PIV and micro-PIV techniques according to seven criteria

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinmann, T., Casas, J. (2014). Laser-Based Optical Methods for the Sensory Ecology of Flow Sensing: From Classical PIV to Micro-PIV and Beyond. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_2

Download citation

Publish with us

Policies and ethics