Skip to main content

Modelling and Control of Wind Parks

  • Chapter
  • First Online:
Handbook of Wind Power Systems

Part of the book series: Energy Systems ((ENERGY))

  • 3966 Accesses

Abstract

Wind parks have experienced a great increase over the last years, from small wind parks with a few wind turbines connected to utility distribution systems, to large wind parks connected to transmission networks that may be considered, from the network system operators point of view, as a single wind power plant with operational capabilities similar to a conventional power plant. In this chapter, three main aspects concern to wind park grid integration are considered: the necessity of suitable wind park models for transient stability studies; the wind park control to fulfill system requirements and the application of special devices to enhance grid integration capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABB (2009) DYNACOMP® The top-class reactive power compensator

    Google Scholar 

  2. Acha E, Fuerte-Esquivel C, Ambriz-Pérez H et al (2004) Facts, modelling and simulation in power networks. Wiley, London

    Book  Google Scholar 

  3. Ackermann Te (2005) Wind power in power systems. Wiley, Stockholm

    Book  Google Scholar 

  4. Akhmatov V (2003) Analysis of dynamic behaviour of electric power systems with large amount of wind power. Electric Power Engineering. Ph.D. Thesis, Ørsted-DTU, Technical University of Denmark, Kongens Lyngby

    Google Scholar 

  5. Akhmatov V, Knudsen H (2002) An aggregated model of a grid-connected, large-scale, offshore wind farm for power stability investigations-importance of windmill mechanical system. Int J Electr Power Energy Syst 25(9):709–717

    Article  Google Scholar 

  6. Alvarez C, Amarís H, Samuelsson O (2007) Voltage dip mitigation at wind farms. In: Proceedings of European wind energy conference EWEC 2007. Milan

    Google Scholar 

  7. Bousseau P, Fesquet F, Belhomme R, Nguefeu S, Thai T (2006) Solutions for the grid integration of wind farms-a survey. Wind Energy 9:13–25

    Article  Google Scholar 

  8. Bozhko S, Asher G, Li R, Clare J, Yao L (2008) Large offshore DFIG-based wind farm with line-commutated HVDC connection to the main grid: engineering studies. IEEE Trans Energy Convers 23(1):119–127

    Article  Google Scholar 

  9. Cartwright P, Holdsworth L, Ekanayake JB, Jenkins N (2004) Co-ordinated voltage control strategy for a (DFIG)-based wind farm. IEE Proc Gener Transm Distrib 151(4):492–502

    Google Scholar 

  10. Chen Z, Blaabjerg F (2009) Wind farm—a power source in future power systems. Renew Sustain Energy 13:1288–1300

    Article  Google Scholar 

  11. EN-50160 S (2007) Voltage characteristics of electricity supplied by public distribution. Commission of the European communities, EC

    Google Scholar 

  12. Eriksson K, Halvarsson P, Wensky D et al (2003) System approach on designing an offshore wind power grid connection. In: 4th international workshop on large-scale integration of wind power and transmission networks for offshore wind farms

    Google Scholar 

  13. Fernández L, García C, Jurado F (2008) Comparative study on the performance of control system for doubly fed induction generator (DFIG) wind turbines operating with power regulation. Energy 33:1438–1452

    Article  Google Scholar 

  14. Fernández L, García C, Saenz J, Jurado F (2009) Equivalent models of wind farms by using aggregated wind turbines and equivalent winds. Energy Convers Manage 50:691–704

    Article  Google Scholar 

  15. Fernández L, Jurado F, Saenz J (2008) Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines. Renew Energy 33:129–140

    Article  Google Scholar 

  16. Fernández L, Saenz J, Jurado F (2006) Dynamic models of wind farms with fixed speed wind turbines. Renew Energy 31:1203–1230

    Article  Google Scholar 

  17. Fernandez R, Battaiotto P, Mantz R (2008) Wind farm non-linear control for damping electromechanical oscillations of power systems. Renew Energy 33:2258–2265

    Article  Google Scholar 

  18. Franklin D, Morelato A (1994) Improving dynamic aggregation of induction motor models. IEEE Trans Power Syst 9(4):1934–1941

    Article  Google Scholar 

  19. García-Gracia M, Comech M, Sallán J, Llombart A (2007) Modelling wind farms for grid disturbance studies. Renew Energy 33:2109–2121

    Article  Google Scholar 

  20. Gjengedal T (2005) Large-scale wind power farm as power plants. Wind Energy 8:361–373

    Article  Google Scholar 

  21. Grünbaum R (2001) Voltage and power quality control in wind power. In: Proceedings of powergen Europe 2001 conference, Brussels

    Google Scholar 

  22. Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Overview of current and future energy storage technologies for electric power applications. Renew Sustain 13:1513–1522

    Article  Google Scholar 

  23. Hansen A, Hansen L (2007) Market penetration of wind turbine concepts over the years. In: Proceedings of European wind energy conference EWEC 2007, Milan EWEC

    Google Scholar 

  24. Hansen A, Sorensen P, Iov F, Blaabjerg F (2006) Centralised power control of wind farm with doubly fed induction generators. Renew Energy 31:935–951

    Article  Google Scholar 

  25. Hansen L, Helle L, Blaabjerg F et al (2001) Risø-R-1205(EN). Conceptual survey of generators and power electronics for wind turbines. Risø National Laboratory, Roskilde

    Google Scholar 

  26. IEA WA (2007) Final Technical Report 2007. Dynamic models of wind farms for power system studies. IEA

    Google Scholar 

  27. IEC 61400-21 (2001) Wind turbine generator systems-part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines, IEC 61400-21. International Electrotechnical Commission

    Google Scholar 

  28. Jauch C, Matevosyan J, Ackermann T, Bolik S (2005) International comparison of requirements for connection of wind turbines to power systems. Wind Energy 8:295–306

    Article  Google Scholar 

  29. Jin Y, Ju P (2009) Dynamic equivalent modeling of FSIG based wind farm according to slip coherency. In: Proceedings of IEEE international conference on sustainable power generation and supply SUPERGEN’09. IEEE, Nanjing, pp 1–9

    Google Scholar 

  30. Kling W, Slootweg J (2002) Wind turbines as power plants IEEE/Cigre workshop on wind power and the impacts on power systems. IEEE, Oslo, p 7

    Google Scholar 

  31. Ko H, Jatskevich J, Dumont G, Yoon G (2008) An advanced LMI-based-LQR design for voltage control of grid-connected wind farm. Electr Power Syst Res 78:539–546

    Article  Google Scholar 

  32. Kristoffersen J (2005) The Horns Rev wind farm and the operational experience with the wind farm main controller. Coopenhagen Offshore Wind 2005, Copenhagen pp 1–9

    Google Scholar 

  33. Li H, Chen Z (2008) Overview of different wind generator systems and their. IET Renew Power Gener 2(2):123–138

    Article  Google Scholar 

  34. Martínez de Alegría I, Andreu J, Martín J, Ibañez P, Vilate J, Camblong H (2007) Connection requirements for wind farms: a survey on technical requirements and regulation. Renew Sustain Energy 11:1858–1872

    Article  Google Scholar 

  35. Max L (2009) Design and control of a DC collection grid for a wind farm. Göteborg. Ph.D. Thesis, Department of Energy and Environment, Chalmers University of Technology, Sweden

    Google Scholar 

  36. Moyano C, Peças Lopes J (2007) Using an OPF like approach to define the operational strategy of a wind park under a system operator control. IEEE power tech 2007. IEEE, Lausanne, pp 651–656

    Google Scholar 

  37. Muljadi E, Parsons B (2006) Comparing single and multiple turbine representations in a wind farm simulation. In: Proceedings of European wind energy conference, EWEC’06, Athens, pp 1–10

    Google Scholar 

  38. Muljadi E, Butterfield C, Chacon J, Romanowithz H (2006) Power quality aspects in a wind power plant. IEEE power engineering society general meeting, IEEE Montreal, pp 1–8

    Google Scholar 

  39. Muljadi E, Pasupulati S, Ellis A, Kosterov D (2008) Method of equivalencing for a large wind power plant with multiple turbine representation. IEEE power and energy society general meeting-conversion and delivery of electrical energy in the 21st Century. IEEE, Pittsburgh, pp 1–9

    Google Scholar 

  40. Nozari F, Kankam MD (1987) Aggregation of induction motors for transient stability load modeling. IEEE Trans Power Syst PWRS-2:1096–1102

    Google Scholar 

  41. Perdana A, Uski S, Carlson O, Lemström B (2006) Validation of aggregate model of wind farm with fixed speed wind turbines against measurement. In: Proceedings of nordic wind power conference, NWPC’06. Future Energy, Espoo, pp 1–9

    Google Scholar 

  42. Pierik J, Morren J (2007) Validation of Dynamic models of wind farms: Erao 3. Delf University of Technology ECN-E-07-006

    Google Scholar 

  43. Pöller M, Achilles S (2004) Aggregated wind park models for analyzing power systems dynamics. In: 4th international workshop on large-scale integration of wind power and transmission networks for off-shore wind farms, Billund, pp 1–10

    Google Scholar 

  44. Rodríguez-Amenedo J, Arnaltes S, Rodríguez M (2008) Operation and coordinated control of fixed and variable speed wind farms. Renew Energy 33:406–414

    Article  Google Scholar 

  45. Sarrias R, Fernandez L, Garcia C, Jurado F (2012) Coordinate operation of power sources in a doubly-fed induction generator wind turbine/battery hybrid power system. J Power Sour 205: 354--366

    Google Scholar 

  46. Shafiu A, Anaya-Lara O, Bathurst G, Jenkins N (2006) Aggregated wind turbine models for power system dynamic studies. Wind Eng 30(3):171–186

    Article  Google Scholar 

  47. Slootweg J (2003) Wind power. Modelling and impact on power system dynamics. PhD. Thesis, Technische Universiteit Delft, Ridderkerk

    Google Scholar 

  48. Slootweg J, Kling W (2002) Modeling of large wind farms in power system simulations. IEEE power engineering society summer meeting. IEEE, Chicago, pp 503–508

    Google Scholar 

  49. Sørensen P, Hansen A, Iov F et al (2005) Risø-R-1464(EN). Wind farm models and control strategies. Risø National Laboratory, Roskilde

    Google Scholar 

  50. Sørensen P, Hansen A, Janosi L et al (2001) RisØ-R-1281. Simulation of interaction between wind farm and power. Risø National Laboratory, Roskilde

    Google Scholar 

  51. Sudrià A, Chindris M, Sumper A et al (2005) Wind turbine operation in power systems and grid connection requirements. In: Proceedings of ICREPQ’05, Zaragoza, pp 1–5

    Google Scholar 

  52. Taleb M, Akbaba M, Abdullah E (1994) Aggregation of induction machines for power systems dynamic studies. IEEE Trans Power Syst 9(4):2042–2048

    Article  Google Scholar 

  53. Tande J (2003) Grid integration of wind farms. Wind Energy 6:281–295

    Article  Google Scholar 

  54. Tande J, Muljadi E, Carlson O et al (2004) Dynamic model of wind farms for power system studies-status by IEA Wind R&W Annex 21. European wind energy conference, EWEC’04, London, pp 22–25

    Google Scholar 

  55. Tapia A, Tapia G, Ostolaza J (2004) Reactive power control of wind farms for voltage control applications. Renew Energy 29:377–392

    Article  Google Scholar 

  56. Tapia G, Tapia A, Ostolaza J (2007) Proportional–integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Trans Energy Convers 22(2):488–498

    Article  Google Scholar 

  57. Trudnowski D, Gentile A, Khan J, Petritz E (2004) Fixed-speed wind-generator and wind-park modelling for transient stability studies. IEEE Trans Power Syst 19(4):1911–1917

    Article  Google Scholar 

  58. Tsili M, Patsiouras C, Papathanassiou S (2008) Grid code requirements for large wind farms: a review of technical regulations and available wind turbine technologies. European wind energy conference EWEC’08, Brussels, pp 1–11

    Google Scholar 

  59. Visiers M, Mendoza J, Búnez J, González F et al (2007) Windfact®, a solution for the grid code compliance of the wind farm in operation. European conference on power electronics and applications. IEEE, Aalborg, pp 1–9

    Google Scholar 

  60. Wachtel S, Adloff S, Marques J, Schellschmidt M (2008) Certification of wind energy converters with FACTS capabilities. European wind energy conference EWEC 2008. Brussels

    Google Scholar 

  61. Wämundson M, Hassan F (2009) HVDC wind park. actively interfaced to the grid. Elforsk, Stockholm

    Google Scholar 

  62. Wang C, Wang L, Shi L (2007) A survey on wind power technologies in power systems. In: IEEE power engineering society general meeting, IEEE, Florida, pp 1–6

    Google Scholar 

  63. Wind on the Grid (2008) Concepts and design of the wind farm cluster management system. Wind on the grid consortium

    Google Scholar 

  64. Zhao J, Li X, Hao J, Lu J (2010) Reactive power control of wind farm made up with doubly fed induction generators in distribution system. Electr Power Syst Res 80:698–706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. García .

Editor information

Editors and Affiliations

Appendix: Wind Park Models Parameters

Appendix: Wind Park Models Parameters

  1. (a)

    350 kW fixed speed wind turbine

Rated power: 350 kW, rated voltage: 660 V, R = 15.2 m, Hr = 5 p.u., gear box ratio: 1:44.5, Kmec = 100 p.u., Dmec = 10 p.u., Hg = 0.5 p.u., Rs = 0.006 p.u., \( {\text{R}}_{\text{r}}^{\prime } = 0.006 \) p.u., Xσs = 0.007 p.u., \( {\text{X}}_{{{\sigma r}}}^\prime = 0.19 \) p.u., Xm = 2.78 p.u., Xc = 2.5 p.u (Fig. 43).

Fig. 43
figure 43

Power curve of a 350 kW fixed speed wind turbine

  1. (b)

    500 kW fixed speed wind turbine

Rated power: 500 kW, rated voltage: 660 V, R = 28 m, Hr = 5 p.u., gear box ratio: 1:89, Kmec = 200 p.u., Dmec = 15 p.u., Hg = 1 p.u., Rs = 0.01 p.u., \( R_{r}^\prime = 0.01 \) p.u., Xσs = 0.01 p.u., \( {\text{X}}_{{\sigma {\text{r}}}}^\prime = 0.08 \) p.u., Xm = 3 p.u., Xc = 2.3 p.u (Fig. 44).

Fig. 44
figure 44

Power curve of a 500 kW fixed speed wind turbine

  1. (c)

    660 kW DFIG wind turbine

Rated power: 660 kW, rated voltage: 660 V, R = 23.5 m, Hr = 0.5 p.u., gear box ratio: 1:52.5, Kmec = 90 p.u., Dmec = 15 p.u., Hg = 3 p.u., Rs = 0.01 p.u., \( R_{r}^\prime = 0.01 \) p.u., Xσs = 0.04 p.u., \( {\text{X}}_{{\sigma {\text{r}}}} \prime = 0.05 \) p.u., Xm = 2.9 p.u (Fig. 45).

Fig. 45
figure 45

Power curve of a 660 kW DFIG wind turbine

  1. (d)

    1.5 MW DFIG wind turbine

Rated power: 1.5 MW, rated voltage: 600 V, R = 41 m, H = 4.64 p.u., Rs = 0.005 p.u., \( R_{r}^\prime = 0.004 \) p.u., Xσs = 0.125 p.u., \( {\text{X}}_{{{\sigma r}}}^\prime = 0.179 \) p.u., Xm = 6.77 p.u (Fig. 46).

Fig. 46
figure 46

Power curve of a 1.5 MW DFIG wind turbine

  1. (e)

    2 MW DFIG wind turbine

Rated power: 2 MW, rated voltage: 690 V, R = 38 m, Hr = 0.5 p.u., gear box ratio: 1:89, Kmec = 95 p.u., Dmec = 40 p.u., Hg = 2.5 p.u., Rs = 0.01 p.u., \( R_{r}^\prime = 0.01 \) p.u., Xσs = 0.1 p.u., \( {\text{X}}_{{{\sigma r}}}^\prime = 0.08 \) p.u., Xm = 3 p.u (Fig. 47).

Fig. 47
figure 47

Power curve of a 2 MW DFIG wind turbine

  1. (f)

    3 MW fixed speed wind turbine

Rated power: 3 MW, rated voltage: 600 V, R = 45 m, Hr = 4.29 p.u., gear box ratio: 1:89, Kmec = 296 p.u., Dmec = 15 p.u., Hg = 0.90 p.u., Rs = 0.003 p.u., \( R_{r}^\prime = 0.002 \) p.u., Xσs = 0.063 p.u., \( {\text{X}}_{{{\sigma r}}}^\prime = 0.089 \) p.u., Xm = 3.38 p.u (Fig. 48).

Fig. 48
figure 48

Power curve of a 3 MW fixed speed wind turbine

  1. (g)

    Electrical network of the fixed speed wind park with 6 wind turbines of 350 kW and 6 wind turbines of 500 kW

  • LV lines Cluster 1 (r = 0.4 Ω/km, x = 0.1 Ω/km, length = 200 m); Cluster 2 (r = 0.4 Ω/km, x = 0.1 Ω/km, length = 300 m).

  • LV/MV transformers Cluster 1 (800 kVA, 20/0.66 kV, εcc = 6 %); Cluster 2 (1,250 kV, 20/0.66 kV, εcc = 5 %).

  • MV lines Cluster 1 (r = 0.15 Ω/km, x = 0.1 Ω/km, length = 500 m); Cluster 2 (r = 0.15 Ω/km, x = 0.1 Ω/km, length = 600 m).

  • MV/HV transformers (10 MVA, 20/66 kV, εcc = 8 %).

  • Feeder (r = 0.2 Ω/km, x = 0.4 Ω/km, length = 10 km).

  • Grid Short circuit power at PCC = 500 MVA, X/R ratio = 20.

  1. (h)

    Electrical network of the DFIG wind park with 6 wind turbines of 2 MW

  • LV/MV transformers (2.5 MVA, 20/0.66 kV, εcc = 6 %).

  • MV lines (r = 0.3 Ω/km, x = 0.1 Ω/km, length = 200 m).

  • MV cluster lines Cluster 1 (r = 0.15 Ω/km, x = 0.05 Ω/km, length = 1 km); Cluster 2 (r = 0.15 Ω/km, x = 0.1 Ω/km, length = 2 km).

  • MV/HV transformers (15 MVA, 20/66 kV, εcc = 8.5 %).

  • Feeder (r = 0.16 Ω/km, x = 0.35 Ω/km, length = 20 km).

  • Grid Short circuit power at PCC = 500 MVA, X/R ratio = 20.

  1. (i)

    Electrical network of the DFIG wind park with 6 wind turbines of 660 kW and 6 wind turbines of 2 MW

  • LV/MV transformers Cluster 1 (800 kVA, 20/0.66 kV, εcc = 6 %); Cluster 2 (2.5 MV, 20/0.66 kV, εcc = 6 %).

  • MV lines Cluster 1 (r = 0.3 Ω/km, x = 0.1 Ω/km, length = 200 m); Cluster 2 (r = 0.4 Ω/km, x = 0.1 Ω/km, length = 200 m).

  • MV cluster lines: Cluster 1 (r = 0.15 Ω/km, x = 0.05 Ω/km, length = 500 km); Cluster 2 (r = 0.15 Ω/km, x = 0.1 Ω/km, length = 2 km).

  • MV/HV transformers Cluster 1 (4 MVA, 20/66 kV, εcc = 8 %); Cluster 2 (15 MVA, 20/66 kV, εcc = 8.5 %).

  • Feeder (r = 0.2 Ω/km, x = 0.4 Ω/km, length = 10 km).

  • Grid Short circuit power at PCC = 500 MVA, X/R ratio = 20.

  1. (j)

    Electrical network of the fixed speed wind park with 3 wind turbines of 3 MW

LV/MV transformers (4 MVA, 25/0.60 kV, εcc = 7.7 %).

MV lines (r = 0.115 Ω/km, x = 0.33 Ω/km, length = 1 km).

MV cluster line (r = 0.115 Ω/km, x = 0.33 Ω/km, length = 25 km).

MV/HV transformers (47 MVA, 25/120 kV, εcc = 3.3 %).

Grid Short circuit power at PCC = 2,500 MVA, X/R ratio = 10.

SVC (3 MVA, 25 kV, tdelay = 4 ms).

STATCOM (3 MVA, 25 kV, R = 0.007 pu, X = 0.22 pu, Ceq = 1,125 μF).

  1. (k)

    Electrical network of the DFIG wind park with 1 wind turbine of 1.5 MW

LV/MV transformers (1.75 MVA, 25/0.60 kV, εcc = 7.7 %).

MV line (r = 0.115 Ω/km, x = 0.33 Ω/km, length = 1 km).

MV cluster line (r = 0.115 Ω/km, x = 0.33 Ω/km, length = 30 km).

MV/HV transformers (15 MVA, 25/120 kV, εcc = 6.3 %).

Grid Short circuit power at PCC = 2,500 MVA, X/R ratio = 10.

Battery (585 Ah, 624 V).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García, C.A., Fernández, L.M., Jurado, F. (2013). Modelling and Control of Wind Parks. In: Pardalos, P., Rebennack, S., Pereira, M., Iliadis, N., Pappu, V. (eds) Handbook of Wind Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41080-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41080-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41079-6

  • Online ISBN: 978-3-642-41080-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics