Skip to main content

Geometric Modeling of Any Obstacle Shapes for Robot Motion Planning

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8102))

Included in the following conference series:

Abstract

We present an algorithm to model the workspace obstacles of a circular robot. Based on robot radius, we apply local geometry to model the obstacles and the operation is called offsetting. Result of our algorithm constructs an efficient configuration space and helps planning high-quality motion paths. Our method works in two major steps: it finds the raw offset curve for both lines and circular arcs in O(n) times and then removes the global invalid loops in O((n + k)logm) times, where n is the number of vertices in the original polygon, k is the number of self-intersections, and m is the number of segments in the raw offset curve and always m ≤ n. Local invalid loops are removed before generating the raw offset curve by invoking a pair-wise intersection detection test (PIDT). Our method is very fast, mathematically well defined, and overall complexity is approximately linear. By applying our simple and efficient approach, offsetting any shape of obstacles is possible to construct a configuration space that ensures optimized motion planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guibas, L.J., Seidel, R.: Computing convolutions by reciprocal search. Discrete and Computational Geometry 2, 175–193 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Varadhan, G., Krishnan, S., Sriram, T.V., Manocha, D.: A simple algorithm for complete motion planning of translating polyhedral robots. Int. Journal of Robotics Research 24(11), 983–995 (2005)

    Google Scholar 

  3. Zhiwei, L., Jianzhong, F., Wenfeng, G.: A robust 2d point-sequence curve offset algorithm with multiple islands for contour-parallel tool path. Computer-Aided Design 45, 657–660 (2013)

    Article  Google Scholar 

  4. Choi, B., Park, S.: A pair-wise offset algorithm for 2d point-sequence curve. Computer Aided Design 31, 735–745 (1999)

    Google Scholar 

  5. Wein, R.: Exact and approximate construction of offset polygons. Computer-Aided Design 39, 518–527 (2007)

    Article  MATH  Google Scholar 

  6. Wong, T.N., Wong, K.W.: Toolpath generation for arbitrary pockets with islands. Int.l Journal of Advanced Manufacturing Technology 12, 174–179 (1996)

    Article  Google Scholar 

  7. Kim, H.C.: Tool path generation for contour parallel milling with incomplete mesh model. Int. J. of Advanced Manufacturing Technology 48, 443–454 (2010)

    Google Scholar 

  8. Kim, H.C., Lee, S.G., Yang, M.Y.: A new offset algorithm for closed 2d lines with islands. Int. J. of Advanced Manufacturing Technology 29, 1169–1177 (2006)

    Google Scholar 

  9. Bo, Q.: Recursive polygon offset computing for rapid prototyping applications based on voronoi diagrams. Int. J. of Advanced Manufacturing Technology 49, 1019–1028 (2010)

    Article  Google Scholar 

  10. Held, M.: Voronoi diagrams and offset curves of curvilinear polygons. Computer Aided Design 30(4), 287–300 (1998)

    Article  MATH  Google Scholar 

  11. Held, M., Huber, S.: Topology-oriented incremental computation of voronoi diagrams of circular arcs and straight-line segments. Computer-Aided Design 41, 327–338 (2009)

    Article  MATH  Google Scholar 

  12. McMains, S., Smith, J., Wang, J., Sequin, C.: Layered manufacturing of thin-walled parts. In: Proceedings of ASME Design Engineering Technical Conference, Baltimore, MD (2000)

    Google Scholar 

  13. Chen, X., McMains, S.: Polygon offsetting by computing winding numbers. In: Proc. of ASME Int. Design Engineering Tech. Conf, IDETC (2005)

    Google Scholar 

  14. Esquivel, W., Chaiang, L.: Nonholonomic path planning among obstacles subject to curvature restrictions. Robotica 20(1), 49–58 (2002)

    Article  Google Scholar 

  15. Srivastava, A., Kartikey, D., Srivastava, U., Rajesh, S.: Non holonomic sortest robot path planning in a dynamic environment using polygonal obstacles. In: Proc. of Int. Conf. on Ind. Tech (ICIT), India (2010)

    Google Scholar 

  16. Wein, R., Berg, J.P., Halperin, D.: The visibility-voronoi complex and its applications. In: SCG Proc. of the twenty-first annual symposium on Computational Geometry, pp. 63–72 (2005)

    Google Scholar 

  17. Choset, H.: Coverage of known spaces: The boustrophedon cellular decomposition. Int.l Journal of Autonomous Robots 9(1), 247–253 (2000)

    Article  Google Scholar 

  18. Viet, H.H., Dang, V.H., Laskar, M.N.U., Chung, T.C.: Ba*: an online complete coverage algorithm for cleaning robots. Int. Jour. of Applied Intelligence (2012), doi:10.1007/s10489-012-0406-4

    Google Scholar 

  19. Schwartz, J.T., Sharir, M.: On the piano movers problem: Ii. general techniques for computing topological properties of real algebraic manifolds. Advances of Applied Maths 4, 298–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer (2008)

    Google Scholar 

  21. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion. MIT Press, Cambridge (2007)

    Google Scholar 

  22. Clodic, A., Montreuil, V., Alami, R., Chatila, R.: A decisional framework for autonomous robots interacting with humans. In: Proc. IEEE Int. Workshop Robot Human Interact. Commun. (2005)

    Google Scholar 

  23. Xu, B., Stilwell, D., Kurdila, A.: A receding horizon controller for motion planning in the presence of moving obstacles. In: Proc. IEEE Int. Conf. Robotics and Automation, ICRA (2010)

    Google Scholar 

  24. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers C-28(9), 643–647 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laskar, M.N.U., Choi, S.Y., Ahmed, I., Chung, T. (2013). Geometric Modeling of Any Obstacle Shapes for Robot Motion Planning. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40852-6_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40852-6_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40851-9

  • Online ISBN: 978-3-642-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics