Skip to main content

Using Probabilistic Strategies to Formalize and Compare α-Synuclein Aggregation and Propagation under Different Scenarios

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8130))

Abstract

We use PSMaude to define a formal real-time model of the aggregation and interneuronal propagation of the α-synuclein (α-syn) protein causing Parkinson’s disease (PD). To the best of our knowledge, this is the first executable formal model of the propagation of α-syn aggregates through a neural network that is dynamically changing as a consequence of neuronal death. We then define different probabilistic strategies on top of our model to formalize the aggregation and propagation of α-syn in three different scenarios: (i) in a healthy person, (ii) in a person predisposed to PD, and (iii) in a predisposed person that is given some treatment with rapamycin. We use PSMaude to simulate our model in these different scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate, A., Bai, Y., Sznajder, N., Talcott, C.L., Tiwari, A.: Quantitative and probabilistic modeling in Pathway Logic. In: BIBE, pp. 922–929. IEEE (2007)

    Google Scholar 

  2. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language for probabilistic object systems. ENTCS 153(2) (2006)

    Google Scholar 

  3. Anastasio, T.J.: Data-driven modeling of Alzheimer disease pathogenesis. Journal of Theoretical Biology 290, 60–72 (2011)

    Article  Google Scholar 

  4. Bentea, L., Ölveczky, P.C.: A probabilistic strategy language for probabilistic rewrite theories and its application to cloud computing. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 77–94. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Bentea, L., Ölveczky, P.C., Bentea, E.: Formalization and simulation of α-synuclein aggregation and propagation under different pathobiological conditions in PSMaude, http://folk.uio.no/lucianb/publications/asyn.pdf (manuscript)

  6. Breydo, L., Wu, J.W., Uversky, V.N.: α-Synuclein misfolding and Parkinson’s disease. Biochimica et Biophysica Acta - Molecular Basis of Disease 1822(2), 261–285 (2012)

    Article  Google Scholar 

  7. Buchman, A.S., et al.: Nigral pathology and parkinsonian signs in elders without Parkinson disease. Annals of Neurology 71(2), 258–266 (2012)

    Article  Google Scholar 

  8. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theoretical Computer Science 410(33-34), 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  10. Collier, T.J., Kanaan, N.M., Kordower, J.H.: Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates. Nature Reviews Neuroscience 12(6), 359–366 (2011)

    Article  Google Scholar 

  11. Crews, L., et al.: Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS ONE 5(2) (2010)

    Google Scholar 

  12. Hansen, C., et al.: α-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. The Journal of Clinical Investigation 121(2), 715–725 (2011)

    Article  Google Scholar 

  13. Henzinger, T.A., Jobstmann, B., Wolf, V.: Formalisms for specifying Markovian population models. Int. J. Found. Comput. Sci. 22(4), 823–841 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoyer, W., Antony, T., Cherny, D., Heim, G., Jovin, T.M., Subramaniam, V.: Dependence of α-synuclein aggregate morphology on solution conditions. Journal of Molecular Biology 322(2), 383–393 (2002)

    Article  Google Scholar 

  15. Kaul, T., et al.: Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson’s disease. BMC Neuroscience 12(1), 79 (2011)

    Article  Google Scholar 

  16. Knowles, T.P.J., et al.: An analytical solution to the kinetics of breakable filament assembly. Science 326(5959), 1533–1537 (2009)

    Article  Google Scholar 

  17. Korth-Bradley, J.M., et al.: Comparative sirolimus pharmacokinetics after single-dose administration of two prototype 0.5-mg tablets in healthy volunteers. Clinical Pharmacology in Drug Development 1(2), 52–56 (2012)

    Google Scholar 

  18. Lecca, P.: Stochastic pi-calculus models of the molecular bases of Parkinson’s disease. In: BIOCOMP 2008, pp. 298–304. CSREA Press (2008)

    Google Scholar 

  19. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

    Article  MATH  Google Scholar 

  20. Pan, T., et al.: Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiology of Disease 32(1), 16–25 (2008)

    Article  Google Scholar 

  21. Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R., Goedert, M.: α-synuclein in Lewy bodies. Nature 388(6645), 839–840 (1997)

    Article  Google Scholar 

  22. Tanner, C.M., et al.: Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives 119(6), 866–872 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bentea, L., Ölveczky, P.C., Bentea, E. (2013). Using Probabilistic Strategies to Formalize and Compare α-Synuclein Aggregation and Propagation under Different Scenarios. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40708-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40707-9

  • Online ISBN: 978-3-642-40708-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics