Skip to main content

Nearly Optimal Private Convolution

  • Conference paper
Book cover Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

We study algorithms for computing the convolution of a private input x with a public input h, while satisfying the guarantees of (ε, δ)-differential privacy. Convolution is a fundamental operation, intimately related to Fourier Transforms. In our setting, the private input may represent a time series of sensitive events or a histogram of a database of confidential personal information. Convolution then captures important primitives including linear filtering, which is an essential tool in time series analysis, and aggregation queries on projections of the data. We give an algorithm for computing convolutions which satisfies (ε, δ)-differentially privacy and is nearly optimal for every public h, i.e. is instance optimal with respect to the public input. We prove optimality via spectral lower bounds on the hereditary discrepancy of convolution matrices. Our algorithm is very efficient – it is essentially no more computationally expensive than a Fast Fourier Transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 273–282. ACM (2007)

    Google Scholar 

  2. Bhaskara, A., Dadush, D., Krishnaswamy, R., Talwar, K.: Unconditional differentially private mechanisms for linear queries. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1269–1284. ACM, New York (2012)

    Chapter  Google Scholar 

  3. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 609–618. ACM, New York (2008)

    Google Scholar 

  4. Bolot, J., Fawaz, N., Muthukrishnan, S., Nikolov, A., Taft, N.: Private decayed sum estimation under continual observation. Arxiv preprint arXiv:1108.6123 (2011)

    Google Scholar 

  5. Hubert Chan, T.-H., Shi, E., Song, D.: Private and continual release of statistics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 405–417. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chandrasekaran, K., Thaler, J., Ullman, J., Wan, A.: Faster private release of marginals on small databases. arXiv preprint arXiv:1304.3754 (2013)

    Google Scholar 

  7. Cheraghchi, M., Klivans, A., Kothari, P., Lee, H.: Submodular functions are noise stable. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1586–1592. SIAM (2012)

    Google Scholar 

  8. Cormode, G., Procopiuc, C.M., Srivastava, D., Yaroslavtsev, G.: Accurate and efficient private release of datacubes and contingency tables

    Google Scholar 

  9. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 202–210. ACM (2003)

    Google Scholar 

  10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Google Scholar 

  11. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 381–390. ACM (2009)

    Google Scholar 

  12. Dwork, C., Pitassi, T., Naor, M., Rothblum, G.: Differential privacy under continual observation. In: STOC (2010)

    Google Scholar 

  13. Gençay, R., Selçuk, F., Whitcher, B.: An Introduction to Wavelets and Other Filtering Methods in Finance and Economics. Elsevier Academic Press (2002)

    Google Scholar 

  14. Gray, R.M.: Toeplitz and circulant matrices: a review. Foundations and Trends in Communications and Information Theory 2(3), 155–239 (2006)

    Article  Google Scholar 

  15. Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and the statistical query barrier. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 803–812. ACM (2011)

    Google Scholar 

  16. Hardt, M., Rothblum, G.: A multiplicative weights mechanism for privacy-preserving data analysis. In: Proc. 51st Foundations of Computer Science (FOCS). IEEE (2010)

    Google Scholar 

  17. Hardt, M., Rothblum, G., Servedio, R.: Private data release via learning thresholds. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 168–187. SIAM (2012)

    Google Scholar 

  18. Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (2010)

    Google Scholar 

  19. Kasiviswanathan, S., Rudelson, M., Smith, A., Ullman, J.: The price of privately releasing contingency tables and the spectra of random matrices with correlated rows. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 775–784. ACM (2010)

    Google Scholar 

  20. Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010, pp. 123–134. ACM, New York (2010)

    Chapter  Google Scholar 

  21. Li, C., Miklau, G.: An adaptive mechanism for accurate query answering under differential privacy. PVLDB 5(6), 514–525 (2012)

    Google Scholar 

  22. Li, C., Miklau, G.: Measuring the achievable error of query sets under differential privacy. CoRR abs/1202.3399 (2012)

    Google Scholar 

  23. Lovász, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices. European Journal of Combinatorics 7(2), 151–160 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Muthukrishnan, S., Nikolov, A.: Optimal private halfspace counting via discrepancy. In: Proceedings of the 44th ACM Symposium on Theory of Computing (2012)

    Google Scholar 

  25. Narayanan, A., Shi, E., Rubinstein, B.: Link prediction by de-anonymization: How we won the kaggle social network challenge. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1825–1834. IEEE (2011)

    Google Scholar 

  26. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy, SP 2008, pp. 111–125. IEEE (2008)

    Google Scholar 

  27. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE (2009)

    Google Scholar 

  28. Nikolov, A., Talwar, K., Zhang, L.: The geometry of differential privacy: the sparse and approximate cases

    Google Scholar 

  29. Thaler, J., Ullman, J., Vadhan, S.: Faster algorithms for privately releasing marginals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 810–821. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fawaz, N., Muthukrishnan, S., Nikolov, A. (2013). Nearly Optimal Private Convolution. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics