Skip to main content

Simulation of Dynamic Path Planning for Real-Time Vision-Base Robots

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 376))

Abstract

Mobile robots work in unfamiliar and unconstructed environments with no previous knowledge. In order to prevent any collisions between the robot and the other objects, dynamic path planning algorithms are presented. Researchers have been presenting new algorithms to overcome the dynamic path planning dilemma, continuously. Most of the time, the prepared algorithm cannot be implemented to the robot directly, since potential problems in the algorithm may lead to endanger the robot or cause other safety difficulties. Hence, it is preferred to test and examine the robot’s behaviour in a simulated environment, before the empirical test. In this paper, we propose a simulation of dynamic path planning algorithm. As a result of this work, D* algorithm is implemented with four different two-dimensional map modeling methods of Square Tiles, Hexagons, Enhanced Hexagons, and Octiles. Then the simulation results are compared based on their speed, number of searched cells, path cost and traveled distance, to point out the most effective map modeling methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjornsson, Y., Enzenberger, M., Holte, R., Schaejfer, J., Yap, P.: Comparison of different grid abstractions for pathfinding on maps. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 1511–1512. Morgan Kaufmann Publishers Inc., San Francisco (2003), http://dl.acm.org/citation.cfm?id=1630659.1630915

    Google Scholar 

  2. Bourbakis, N.: Heuristic collision-free path planning for an autonomous platform. Journal of Intelligent and Robotic Systems 1(4), 375–387 (1989), http://dx.doi.org/10.1007/BF00126467

    Article  Google Scholar 

  3. Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L.E., Lynch, K., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press (June 2005), http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10340

  4. Hematian, A., Manaf, A., Chuprat, S., Khaleghparast, R., Yazdani, S.: Field programmable gate array system for real-time iris recognition. In: 2012 IEEE Conference on Open Systems (ICOS), pp. 1–6 (2012)

    Google Scholar 

  5. Hematian, A., Chuprat, S., Manaf, A.A., Yazdani, S., Parsazadeh, N.: Real-time FPGA-based human iris recognition embedded system: Zero-delay human iris feature extraction. In: Meesad, P., Unger, H., Boonkrong, S. (eds.) IC2IT2013. AISC, vol. 209, pp. 195–204. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-37371-8_23

    Chapter  Google Scholar 

  6. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  7. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics 21(3), 354–363 (2005)

    Article  Google Scholar 

  8. Koenig, S., Tovey, C., Smirnov, Y.: Performance bounds for planning in unknown terrain. Artif. Intell. 147(1-2), 253–279 (2003), http://dx.doi.org/10.1016/S0004-3702(03)00062-6

    Google Scholar 

  9. LaValle, S., Branicky, M.: On the relationship between classical grid search and probabilistic roadmaps. In: Boissonnat, J.D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 59–76. Springer, Heidelberg (2004), http://dx.doi.org/10.1007/978-3-540-45058-0_5

    Chapter  Google Scholar 

  10. Murphy, R.R.: Introduction to AI Robotics, 1st edn. MIT Press, Cambridge (2000)

    Google Scholar 

  11. Patel, A.: Amit’s game programming information. International Journal of Robotics Research (2000), http://www-cs-students.stanford.edu/~amitp/gameprog.html

  12. Perkins, S., Marais, P., Gain, J., Berman, M.: Field d* path-finding on weighted triangulated and tetrahedral meshes. Autonomous Agents and Multi-Agent Systems 26(3), 354–388 (2013), http://dx.doi.org/10.1007/s10458-012-9195-8

    Article  Google Scholar 

  13. Rufli, M., Ferguson, D., Siegwart, R.: Smooth path planning in constrained environments. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3780–3785 (2009)

    Google Scholar 

  14. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984), http://doi.acm.org/10.1145/356924.356930

    Article  MathSciNet  Google Scholar 

  15. Sanchez, G., Latombe, J.C.: On delaying collision checking in prm planning – application to multi-robot coordination. International Journal of Robotics Research 21, 5–26 (2002)

    Article  Google Scholar 

  16. Snook, G.: Simplified 3d movement and pathfinding using navigation meshes. In: DeLoura, M. (ed.) Game Programming Gems, pp. 288–304. Charles River Media (2000)

    Google Scholar 

  17. Stentz, A.: The focussed d* algorithm for real-time replanning. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 2, pp. 1652–1659. Morgan Kaufmann Publishers Inc., San Francisco (1995), http://dl.acm.org/citation.cfm?id=1643031.1643113

    Google Scholar 

  18. Tozour, P.: Building a Near-Optimal Navigation Mesh, pp. 171–185. Charles River Media, Inc. (2002), http://tinyurl.com/5vg3274

  19. Wang, W., Goh, W.-B.: Multi-robot path planning with the spatio-temporal A* algorithm and its variants. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011 Workshops. LNCS, vol. 7068, pp. 313–329. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Yap, P.: Grid-based path-finding. In: Cohen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2338, pp. 44–55. Springer, Heidelberg (2002), http://dx.doi.org/10.1007/3-540-47922-8_4

    Chapter  Google Scholar 

  21. Zelkowitz, M., Wallace, D.: Experimental models for validating technology. Computer 31(5), 23–31 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Othman, M.F., Samadi, M., Asl, M.H. (2013). Simulation of Dynamic Path Planning for Real-Time Vision-Base Robots. In: Omar, K., et al. Intelligent Robotics Systems: Inspiring the NEXT. FIRA 2013. Communications in Computer and Information Science, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40409-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40409-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40408-5

  • Online ISBN: 978-3-642-40409-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics