Skip to main content

TRPP2 in Polycystic Kidney Disease

  • Chapter
  • First Online:
Pathologies of Calcium Channels
  • 1403 Accesses

Abstract

Mutations in PKD1 (85 %) or PKD2 (15 %) account for almost all cases of autosomal dominant polycystic kidney disease (ADPKD). The ADPKD proteins, polycystin-1 and polycystin-2 interact to form a receptor-ion channel complex which regulates tubular structure in the developing and adult kidney. Polycystin-2 (TRPP2) is the founding member of the Transient Receptor Potential Polycystic (TRPP) subfamily of non-selective ion channels. Considerable progress has been made in recent years to understand the structure and function of TRPP2 and its relevance to the pathogenesis of ADPKD. TRPP2 channels have been shown to reside in a number of different subcellular compartments regulating intracellular calcium levels as part of a complex with polycystin-1 and other channel proteins. Disturbed calcium signalling mediated by loss of TRPP2 or its interacting partner polycystin-1 is clearly an early event in the development of a cystic phenotype. Understanding the functional significance of disrupted calcium signalling and identifying affected downstream pathways may lead to the development of new therapeutic approaches in the treatment of ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiari G, Banzi M, Gessi S, Cai Y, Zeggio E, Manzati E, Piva R, Lambertini E, Ferrari L, Peters DJ, Lanza F, Harris PC, Borea PA, Somlo S, Del Senno L (2004) Deficiency of polycystin-2 reduces Ca2 + channel activity and cell proliferation in ADPKD lymphoblastoid cells. Faseb J 18(7):884–886

    PubMed  CAS  Google Scholar 

  • Alehan FK, Gurakan B, Agildere M (2002) Familial arachnoid cysts in association with autosomal dominant polycystic kidney disease. Pediatrics 110(1):3

    Google Scholar 

  • Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE (2007) Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Nat Acad Sci USA 104(15):6454–6459

    PubMed  CAS  Google Scholar 

  • Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9(5):472–479

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    PubMed  CAS  Google Scholar 

  • Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109(2):157–168

    PubMed  CAS  Google Scholar 

  • Bogdanova N, Markoff A, Gerke V, McCluskey M, Horst J, Dworniczak B (2001) Homologues to the first gene for autosomal dominant polycystic kidney disease are pseudogenes. Genomics 74(3):333–341

    PubMed  CAS  Google Scholar 

  • Braun AP, Sy L (2001) Contribution of potential EF hand motifs to the calcium-dependent gating of a mouse brain large conductance, calcium-sensitive K(+) channel. J physiol 533(Pt 3):681–695

    PubMed  CAS  Google Scholar 

  • Burtey S, Riera M, Ribe E, Pennenkamp P, Rance R, Luciani J, Dworniczak B, Mattei MG, Fontes M (2008) Centrosome overduplication and mitotic instability in PKD2 transgenic lines. Cell Biol Int 32(10):1193–1198

    PubMed  CAS  Google Scholar 

  • Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z, Onoe T, Mei CL, Qian Q, Geng L, Wiztgall R, Ehrlich BE, Somlo S (2004) Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J Biol Chem 279(19):19987–19995

    PubMed  CAS  Google Scholar 

  • Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274(40):28557–28565

    PubMed  CAS  Google Scholar 

  • Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21(2):107–123

    PubMed  CAS  Google Scholar 

  • Celic A, Petri ET, Demeler B, Ehrlich BE, Boggon TJ (2008) Domain mapping of the polycystin-2 C-terminal tail using de novo molecular modeling and biophysical analysis. J Biol Chem 283(42):28305–28312

    PubMed  CAS  Google Scholar 

  • Chang MY, Parker E, Ibrahim S, Shortland JR, Nahas ME, Haylor JL, Ong AC (2006) Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrol Dial Transplant 21(8):2078–2084

    PubMed  CAS  Google Scholar 

  • Chapin HC, Rajendran V, Caplan MJ (2010) Polycystin-1 surface localization is stimulated by polycystin-2 and cleavage at the G protein-coupled receptor proteolytic site. Mol Biol Cell 21(24):4338–4348

    PubMed  CAS  Google Scholar 

  • Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, Kenney PJ, King BF, Glockner JF, Wetzel LH, Brummer ME, O’Neill WC, Robbin ML, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP (2003) Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The consortium for radiologic imaging studies of polycystic kidney disease (CRISP) cohort. Kidney Int 64(3):1035–1045

    PubMed  Google Scholar 

  • Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401(6751):383–386

    PubMed  CAS  Google Scholar 

  • Cogswell C, Price SJ, Hou X, Guay-Woodford LM, Flaherty L, Bryda EC (2003) Positional cloning of jcpk/bpk locus of the mouse. Mamm Genome 14(4):242–249

    PubMed  CAS  Google Scholar 

  • Cuppage FE, Huseman RA, Chapman A, Grantham JJ (1980) Ultrastructure and function of cysts from human adult polycystic kidneys. Kidney Int 17(3):372–381

    PubMed  CAS  Google Scholar 

  • Deane JA, Ricardo SD (2007) Polycystic kidney disease and the renal cilium. Nephrology (Carlton) 12(6):559–564

    CAS  Google Scholar 

  • Delmas P (2004) Polycystins: from mechanosensation to gene regulation. Cell 118(2):145–148

    PubMed  CAS  Google Scholar 

  • Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 451(1):264–276

    PubMed  CAS  Google Scholar 

  • Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J (2004a) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18(6):740–742

    PubMed  CAS  Google Scholar 

  • Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M (2004b) Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 322(4):1374–1383

    PubMed  CAS  Google Scholar 

  • Du J, Ding M, Sours-Brothers S, Graham S, Ma R (2008) Mediation of angiotensin II-induced Ca2 + signaling by polycystin 2 in glomerular mesangial cells. Am J Physiol Renal Physiol 294(4):F909–F918

    PubMed  CAS  Google Scholar 

  • Edelstein CL (2005) What is the role of tubular epithelial cell apoptosis in polycystic kidney disease (PKD). Cell Cycle 4(11):1550–1554

    PubMed  CAS  Google Scholar 

  • Feng S, Okenka GM, Bai CX, Streets AJ, Newby LJ, DeChant BT, Tsiokas L, Obara T, Ong AC (2008) Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2. J Biol Chem 283(42):28471–28479

    PubMed  CAS  Google Scholar 

  • Feng S, Rodat-Despoix L, Delmas P, Ong AC (2011) A single amino acid residue constitutes the third dimerization domain essential for the assembly and function of the tetrameric polycystin-2 (TRPP2) channel. J Biol Chem 286(21):18994–19000

    PubMed  CAS  Google Scholar 

  • Fick-Brosnahan GM, Belz MM, McFann KK, Johnson AM, Schrier RW (2002) Relationship between renal volume growth and renal function in autosomal dominant polycystic kidney disease: A longitudinal study. Am J Kidney Dis 39(6):1127–1134

    PubMed  Google Scholar 

  • Fick GM, Johnson AM, Strain JD, Kimberling WJ, Kumar S, Mancojohnson ML, Duley IT, Gabow PA (1993) Characteristics of very early-onset autosomal-dominant polycystic kidney-disease. J Am Soc Nephrol 3(12):1863–1870

    PubMed  CAS  Google Scholar 

  • Field S, Riley KL, Grimes DT, Hilton H, Simon M, Powles-Glover N, Siggers P, Bogani D, Greenfield A, Norris DP (2011) Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2. Development 138(6):1131–1142

    PubMed  CAS  Google Scholar 

  • Fu X, Wang Y, Schetle N, Gao H, Putz M, von Gersdorff G, Walz G, Kramer-Zucker AG (2008) The subcellular localization of TRPP2 modulates its function. J Am Soc Nephrol 19(7):1342–1351

    PubMed  CAS  Google Scholar 

  • Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R (2000) The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci USA 97(8):4017–4022

    PubMed  CAS  Google Scholar 

  • Gallagher AR, Germino GG, Somlo S (2010) Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17(2):118–130

    PubMed  Google Scholar 

  • Garcia-Gonzalez MA, Jones JG, Allen SK, Palatucci CM, Batish SD, Seltzer WK, Lan Z, Allen E, Qian F, Lens XM, Pei Y, Germino GG, Watnick TJ (2007) Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. Mol Genet Metab 92(1–2):160–167

    PubMed  CAS  Google Scholar 

  • Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119(Pt 7):1383–1395

    PubMed  CAS  Google Scholar 

  • Giamarchi A, Delmas P (2007) Activation mechanisms and functional roles of TRPP2 cation channels. doi:NBK5258 [bookaccession]

    Google Scholar 

  • Giamarchi A, Feng S, Rodat-Despoix L, Xu Y, Bubenshchikova E, Newby LJ, Hao J, Gaudioso C, Crest M, Lupas AN, Honore E, Williamson MP, Obara T, Ong AC, Delmas P (2010) A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J 29(7):1176–1191

    PubMed  CAS  Google Scholar 

  • Grimm DH, Karihaloo A, Cai Y, Somlo S, Cantley LG, Caplan MJ (2006) Polycystin-2 regulates proliferation and branching morphogenesis in kidney epithelial cells. J Biol Chem 281(1):137–144

    PubMed  CAS  Google Scholar 

  • Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408(6815):990–994. doi:10.1038/35050128

    PubMed  CAS  Google Scholar 

  • Harris PC, Germino G, Klinger K, Landes G, van Adelsberg J (1995) The PKD1 gene product. Nat Med 1(6):493

    PubMed  CAS  Google Scholar 

  • Hateboer N, Dijk MAV, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353(9147):103–107

    Google Scholar 

  • Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159--7164

    Google Scholar 

  • Hoffmeister H, Babinger K, Gurster S, Cedzich A, Meese C, Schadendorf K, Osten L, de Vries U, Rascle A, Witzgall R (2011) Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. J Cell Biol 192(4):631–645

    PubMed  CAS  Google Scholar 

  • Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, Huang BQ, Leontovich AA, Beito TG, Madden BJ, Charlesworth MC, Torres VE, LaRusso NF, Harris PC, Ward CJ (2009) Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 20(2):278–288

    PubMed  CAS  Google Scholar 

  • Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317--1322

    Google Scholar 

  • Hu J, Bae YK, Knobel KM, Barr MM (2006) Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol Biol Cell 17(5):2200–2211

    PubMed  CAS  Google Scholar 

  • Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189

    PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Bukanov NO, Donohue LC, Dackowski WR, Klinger KW, Landes GM (2000) Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum Mol Genet 9(11):1641–1649

    PubMed  CAS  Google Scholar 

  • Jurczyk A, Gromley A, Redick S, San Agustin J, Witman G, Pazour GJ, Peters DJ, Doxsey S (2004) Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol 166(5):637–643

    PubMed  CAS  Google Scholar 

  • Kamura K, Kobayashi D, Uehara Y, Koshida S, Iijima N, Kudo A, Yokoyama T, Takeda H (2011) Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis. Development 138(6):1121–1129

    PubMed  CAS  Google Scholar 

  • Kim E, Arnould T, Sellin LK, Benzing T, Fan MJ, Gruning W, Sokol SY, Drummond I, Walz G (1999) The polycystic kidney disease 1 gene product modulates Wnt signaling. J Biol Chem 274(8):4947–4953

    PubMed  CAS  Google Scholar 

  • Kimberling WJ, Kumar S, Gabow PA, Kenyon JB, Connolly CJ, Somlo S (1993) Autosomal-dominant polycystic kidney-disease—localization of the 2nd gene to chromosome-4q13-q23. Genomics 18(3):467–472

    PubMed  CAS  Google Scholar 

  • Kobori T, Smith GD, Sandford R, Edwardson JM (2009) The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284(51):35507–35513

    PubMed  CAS  Google Scholar 

  • Koptides M, Hadjimichael C, Koupepidou P, Pierides A, Constantinou Deltas C (1999) Germinal and somatic mutations in the PKD2 gene of renal cysts in autosomal dominant polycystic kidney disease. Hum Mol Genet 8(3):509–513

    PubMed  CAS  Google Scholar 

  • Koptides M, Mean R, Demetriou K, Pierides A, Deltas CC (2000) Genetic evidence for a trans-heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease. Hum Mol Genet 9(3):447–452

    PubMed  CAS  Google Scholar 

  • Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Hopker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas G, Walz G (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24(4):705–716

    PubMed  Google Scholar 

  • Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182(3):437–447

    PubMed  Google Scholar 

  • Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197

    PubMed  CAS  Google Scholar 

  • Kraus MR, Clauin S, Pfister Y, Di Maio M, Ulinski T, Constam D, Bellanne-Chantelot C, Grapin-Botton A (2012) Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum Mutat 33(1):86–90

    PubMed  CAS  Google Scholar 

  • Kubota T, Kinoshita M, Sasaki R, Aoike F, Takahashi MP, Sakoda S, Hirose K (2009) New mutation of the Na channel in the severe form of potassium-aggravated myotonia. Muscle Nerve 39(5):666–673

    PubMed  CAS  Google Scholar 

  • Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13(6):1153–1160

    PubMed  CAS  Google Scholar 

  • Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, Deruiter MC, Breuning MH, de Heer E, Peters DJ (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13(24):3069–3077

    PubMed  CAS  Google Scholar 

  • Lehtonen S, Ora A, Olkkonen VM, Geng L, Zerial M, Somlo S, Lehtonen E (2000) In vivo interaction of the adapter protein CD2-associated protein with the type 2 polycystic kidney disease protein, polycystin-2. J Biol Chem 275(42):32888–32893

    PubMed  CAS  Google Scholar 

  • Li A, Tian X, Sung SW, Somlo S (2003a) Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81(6):596–608

    PubMed  CAS  Google Scholar 

  • Li Q, Dai Y, Guo L, Liu Y, Hao C, Wu G, Basora N, Michalak M, Chen XZ (2003b) Polycystin-2 associates with tropomyosin-1, an actin microfilament component. J Mol Biol 325(5):949–962

    PubMed  CAS  Google Scholar 

  • Li Q, Montalbetti N, Shen PY, Dai XQ, Cheeseman CI, Karpinski E, Wu G, Cantiello HF, Chen XZ (2005a) Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet 14(12):1587–1603

    PubMed  CAS  Google Scholar 

  • Li X, Luo Y, Starremans PG, McNamara CA, Pei Y, Zhou J (2005b) Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 7(12):1202–1212

    PubMed  Google Scholar 

  • Li Y, Wright JM, Qian F, Germino GG, Guggino WB (2005c) Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2 + signaling. J Biol Chem 280(50):41298–41306

    PubMed  CAS  Google Scholar 

  • Li Q, Montalbetti N, Wu Y, Ramos AJ, Raychowdhury MK, Chen XZ, Cantiello HF (2006) Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 281:37566–37575

    Google Scholar 

  • Li Y, Santoso NG, Yu S, Woodward OM, Qian F, Guggino WB (2009) Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2 + signaling with implications for polycystic kidney disease. J Biol Chem 284(52):36431–36441

    PubMed  CAS  Google Scholar 

  • Liang G, Yang J, Wang Z, Li Q, Tang Y, Chen XZ (2008) Polycystin-2 down-regulates cell proliferation via promoting PERK-dependent phosphorylation of eIF2alpha. Hum Mol Genet 17(20):3254–3262

    PubMed  CAS  Google Scholar 

  • Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 100(9):5286–5291

    PubMed  CAS  Google Scholar 

  • Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J (2003) Native polycystin 2 functions as a plasma membrane Ca2 + -permeable cation channel in renal epithelia. Mol Cell Biol 23(7):2600–2607

    PubMed  CAS  Google Scholar 

  • Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25(18):8285–8298

    PubMed  CAS  Google Scholar 

  • Matsumoto Y, Maller JL (2002) Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. Science 295(5554):499–502

    PubMed  CAS  Google Scholar 

  • Mekahli D, Sammels E, Luyten T, Welkenhuyzen K, van den Heuvel LP, Levtchenko EN, Gijsbers R, Bultynck G, Parys JB, De Smedt H, Missiaen L (2012) Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca(2 +) release. Cell Calcium. doi:10.1016/j.ceca.2012.03.002

    PubMed  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272(5266):1339–1342

    PubMed  CAS  Google Scholar 

  • Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104:2199--2204

    Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005(272):re3

    Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V (2002a) The TRP channels, a remarkably functional family. Cell 108(5):595–598

    PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002b) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9(2):229–231

    PubMed  CAS  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137

    PubMed  CAS  Google Scholar 

  • Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB, Harris PC, Ingber DE, Loghman-Adham M, Zhou J (2006) Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol 17(4):1015–1025

    PubMed  CAS  Google Scholar 

  • Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. BioEssays 26(8):844–856

    PubMed  CAS  Google Scholar 

  • Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 277(23):20763–20773

    PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218

    PubMed  CAS  Google Scholar 

  • Nishiura JL, Neves RFCA, Eloi SRM, Cintra SMLF, Ajzen SA, Heilberg IP (2009) Evaluation of nephrolithiasis in autosomal dominant polycystic kidney disease patients. Clin J Am Soc Nephrol 4(4):838–844

    PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635--648

    Google Scholar 

  • O’Neill WC, Robbin ML, Bae KT, Grantham JJ, Chapman AB, Guay-Woodford LM, Torres VE, King BF, Wetzel LH, Thompson PA, Miller JP (2005) Sonographic assessment of the severity and progression of autosomal dominant polycystic kidney disease: The consortium of renal imaging studies in polycystic kidney disease (CRISP). Am J Kidney Dis 46(6):1058–1064

    PubMed  Google Scholar 

  • Ong AC (2000) Polycystin expression in the kidney and other tissues: complexity, consensus and controversy. Exp Nephrol 8(4–5):208–214

    PubMed  CAS  Google Scholar 

  • Ong AC, Harris PC (2005) Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 67(4):1234–1247

    PubMed  CAS  Google Scholar 

  • Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC (1999) Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 154(6):1721–1729

    PubMed  CAS  Google Scholar 

  • Ong AC, Wheatley DN (2003) Polycystic kidney disease–the ciliary connection. Lancet 361(9359):774–776

    PubMed  CAS  Google Scholar 

  • Parnell SC, Magenheimer BS, Maser RL, Rankin CA, Smine A, Okamoto T, Calvet JP (1998) The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem Biophys Res Commun 251(2):625–631

    PubMed  CAS  Google Scholar 

  • Parnell SC, Magenheimer BS, Maser RL, Zien CA, Frischauf AM, Calvet JP (2002) Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. J Biol Chem 277(22):19566–19572

    PubMed  CAS  Google Scholar 

  • Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, Igarashi P (2008) Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 17(11):1578–1590

    PubMed  CAS  Google Scholar 

  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718

    PubMed  CAS  Google Scholar 

  • Pei Y (2001) A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease. Trends Mol Med 7(4):151–156

    PubMed  CAS  Google Scholar 

  • Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12(11):938–943

    PubMed  CAS  Google Scholar 

  • Peters DJ, Breuning MH (2001) Autosomal dominant polycystic kidney disease: modification of disease progression. Lancet 358(9291):1439–1444

    PubMed  CAS  Google Scholar 

  • Peters DJM, Spruit L, Saris JJ, Ravine D, Sandkuijl LA, Fossdal R, Boersma J, Vaneijk R, Norby S, Constantinoudeltas CD, Pierides A, Brissenden JE, Frants RR, Vanommen GJB, Breuning MH (1993) Chromosome 4 localization of a 2nd gene for autosomal-dominant polycystic kidney-disease. Nat Genet 5(4):359–362

    PubMed  CAS  Google Scholar 

  • Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME (2010) Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2 + -dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci USA 107(20):9176–9181

    PubMed  CAS  Google Scholar 

  • Peyronnet R, Sharif-Naeini R, Folgering JH, Arhatte M, Jodar M, El Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters DJ, Somlo S, Sachs F, Patel A, Honore E, Duprat F (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. Cell Rep 1(3):241–250

    PubMed  CAS  Google Scholar 

  • Piazzon N, Maisonneuve C, Guilleret I, Rotman S, Constam DB (2012) Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing. J Mol Cell Biol. doi:mjs027 [pii] 10.1093/jmcb/mjs027

  • Plotnikova OV, Pugacheva EN, Dunbrack RL, Golemis EA (2010) Rapid calcium-dependent activation of Aurora-A kinase. Nat Commun 1:64. doi:ncomms1061 [pii] 10.1038/ncomms1061

  • Plotnikova OV, Pugacheva EN, Golemis EA (2011) Aurora A kinase activity influences calcium signaling in kidney cells. J Cell Biol 193(6):1021–1032

    PubMed  CAS  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184(1):71–79

    PubMed  CAS  Google Scholar 

  • Pritchard L, Sloane-Stanley JA, Sharpe JA, Aspinwall R, Lu W, Buckle V, Strmecki L, Walker D, Ward CJ, Alpers CE, Zhou J, Wood WG, Harris PC (2000) A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum Mol Genet 9(18):2617–2627

    PubMed  CAS  Google Scholar 

  • Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Germino GG (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci USA 99(26):16981–16986

    PubMed  CAS  Google Scholar 

  • Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87(6):979–987

    PubMed  CAS  Google Scholar 

  • Qian Q, Hunter LW, Li M, Marin-Padilla M, Prakash YS, Somlo S, Harris PC, Torres VE, Sieck GC (2003) Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum Mol Genet 12(15):1875–1880

    PubMed  CAS  Google Scholar 

  • Reeders ST, Keith T, Green P, Germino GG, Barton NJ, Lehmann OJ, Brown VA, Phipps P, Morgan J, Bear JC, Parfrey P (1988) Regional localization of the autosomal dominant polycystic kidney disease locus. Genomics 3(2):150–155

    PubMed  CAS  Google Scholar 

  • Rivera M, Gonzalo A, Gobernado JM, Orte L, Quereda C, Ortuno J (1992) Stroke in adult polycystic kidney-disease. Postgrad Med J 68(803):735–738

    PubMed  CAS  Google Scholar 

  • Rossetti S, Chauveau D, Walker D, Saggar-Malik A, Winearls CG, Torres VE, Harris PC (2002) A complete mutation screen of the ADPKD genes by DHPLC. Kidney Int 61(5):1588–1599

    PubMed  CAS  Google Scholar 

  • Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC (2007) CRISP consortium: Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18(7):2143–2160

    PubMed  CAS  Google Scholar 

  • Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, Roy S, Bakkaloglu A, Komel R, Winearls CG, Harris PC (2001) Mutation analysis of the entire PKD1 gene: Genetic and diagnostic implications. Am J Hum Genet 68(1):46–63

    PubMed  CAS  Google Scholar 

  • Rundle DR, Gorbsky G, Tsiokas L (2004) PKD2 interacts and co-localizes with mDia1 to mitotic spindles of dividing cells: role of mDia1 IN PKD2 localization to mitotic spindles. J Biol Chem 279(28):29728–29739

    PubMed  CAS  Google Scholar 

  • Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, Cai Y, Somlo S, De Smedt H (2010a) Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2 + release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J Biol Chem 285(24):18794–18805

    PubMed  CAS  Google Scholar 

  • Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, De Smedt H (2010b) Unraveling the role of polycystin-2/inositol 1,4,5-trisphosphate receptor interaction in Ca signaling. Commun Integr Biol 3(6):530–532

    PubMed  Google Scholar 

  • Scheff RT, Zuckerman G, Harter H, Delmez J, Koehler R (1980) Diverticular-disease in patients with chronic-renal-failure due to polycystic kidney-disease. Ann Intern Med 92(2):202–204

    PubMed  CAS  Google Scholar 

  • Scheffers MS, Le H, van der Bent P, Leonhard W, Prins F, Spruit L, Breuning MH, de Heer E, Peters DJ (2002) Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Hum Mol Genet 11(1):59–67

    PubMed  CAS  Google Scholar 

  • Schumann F, Hoffmeister H, Bader R, Schmidt M, Witzgall R, Kalbitzer HR (2009a) Ca2 + -dependent conformational changes in a C-terminal cytosolic domain of polycystin-2. J Biol Chem 284(36):24372–24383

    PubMed  CAS  Google Scholar 

  • Schumann FH, Hoffmeister H, Schmidt M, Bader R, Besl E, Witzgall R, Kalbitzer HR (2009b) NMR-assignments of a cytosolic domain of the C-terminus of polycystin-2. Biomol NMR Assign 3(1):141–144

    PubMed  CAS  Google Scholar 

  • Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139(3):587–596

    PubMed  CAS  Google Scholar 

  • Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J (2008) Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol 19(3):469–476

    PubMed  CAS  Google Scholar 

  • Sorenson CM, Padanilam BJ, Hammerman MR (1996) Abnormal postpartum renal development and cystogenesis in the bcl-2 (-/-) mouse. Am J Physiol 271(1 Pt 2):F184–F193

    PubMed  CAS  Google Scholar 

  • Streets AJ, Moon DJ, Kane ME, Obara T, Ong AC (2006) Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet 15(9):1465–1473

    PubMed  CAS  Google Scholar 

  • Streets AJ, Needham AJ, Gill SK, Ong AC (2010) Protein kinase D-mediated phosphorylation of polycystin-2 (TRPP2) is essential for its effects on cell growth and calcium channel activity. Mol Biol Cell 21(22):3853–3865

    PubMed  CAS  Google Scholar 

  • Streets AJ, Newby LJ, O’Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O, Ong AC (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 14(7):1804–1815

    PubMed  CAS  Google Scholar 

  • Streets AJ, Wagner BE, Harris PC, Ward CJ, Ong AC (2009) Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 122(Pt 9):1410–1417

    PubMed  CAS  Google Scholar 

  • Streets AJ, Wessely O, Peters DJM, Ong ACM (2013) Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1 mediated dephosphorylation. Hum Mol Genet. doi:10.1093/hmg/ddt031)

    PubMed  Google Scholar 

  • Sun H, Li QW, Lv XY, Ai JZ, Yang QT, Duan JJ, Bian GH, Xiao Y, Wang YD, Zhang Z, Liu YH, Tan RZ, Yang Y, Wei YQ, Zhou Q (2010) MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol Biol Rep 37(6):2951–2958

    PubMed  CAS  Google Scholar 

  • Sutton KA, Jungnickel MK, Ward CJ, Harris PC, Florman HM (2006) Functional characterization of PKDREJ, a male germ cell-restricted polycystin. J Cell Physiol 209(2):493–500

    PubMed  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39 (Database issue):D561–568

    Google Scholar 

  • Tan Y-C, Blumenfeld JD, Anghel R, Donahue S, Belenkaya R, Balina M, Parker T, Levine D, Leonard DGB, Rennert H (2009) Novel method for genomic analysis of PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease. Hum Mutat 30(2):264–273

    PubMed  CAS  Google Scholar 

  • Tao Y, Kim J, Faubel S, Wu JC, Falk SA, Schrier RW, Edelstein CL (2005) Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc Natl Acad Sci USA 102(19):6954–6959

    PubMed  CAS  Google Scholar 

  • The European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 78 (4):725

    Google Scholar 

  • Tokiwa S, Muto S, China T, Horie S (2011) The relationship between renal volume and renal function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol 15(4):539–545

    PubMed  CAS  Google Scholar 

  • Torra R, Badenas C, Darnell A, Nicolau C, Volpini V, Revert L, Estivill X (1996) Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol 7(10):2142–2151

    PubMed  CAS  Google Scholar 

  • Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. doi:10.1056/NEJMoa1205511

    Google Scholar 

  • Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76(2):149–168

    PubMed  Google Scholar 

  • Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369(9569):1287–1301

    PubMed  Google Scholar 

  • Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137(7):1107–1116

    PubMed  CAS  Google Scholar 

  • Tsiokas L (2009) Function and regulation of TRPP2 at the plasma membrane. Am J Physiol Renal Physiol 297(1):F1–F9

    PubMed  CAS  Google Scholar 

  • Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2 +) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282(1):341–350

    PubMed  CAS  Google Scholar 

  • Wang Q, Dai XQ, Li Q, Wang Z, Cantero Mdel R, Li S, Shen J, Tu JC, Cantiello H, Chen XZ (2012) Structural interaction and functional regulation of polycystin-2 by filamin. PLoS ONE 7(7):e40448

    PubMed  CAS  Google Scholar 

  • Wang X, Gattone V 2nd, Harris PC, Torres VE (2005) Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol 16(4):846–851

    PubMed  CAS  Google Scholar 

  • Watnick T, He N, Wang K, Liang Y, Parfrey P, Hefferton D, St George-Hyslop P, Germino G, Pei Y (2000) Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat Genet 25(2):143–144

    PubMed  CAS  Google Scholar 

  • Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, Klinger KW, Landes G, Germino GG (1998) Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 2(2):247–251

    PubMed  CAS  Google Scholar 

  • Wegierski T, Steffl D, Kopp C, Tauber R, Buchholz B, Nitschke R, Kuehn EW, Walz G, Kottgen M (2009) TRPP2 channels regulate apoptosis through the Ca2 + concentration in the endoplasmic reticulum. EMBO J 28(5):490–499

    PubMed  CAS  Google Scholar 

  • Winyard PJ, Nauta J, Lirenman DS, Hardman P, Sams VR, Risdon RA, Woolf AS (1996) Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int 49(1):135–146

    PubMed  CAS  Google Scholar 

  • Woo D (1995) Apoptosis and loss of renal tissue in polycystic kidney diseases. N Engl J Med 333(1):18–25

    PubMed  CAS  Google Scholar 

  • Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93(2):177–188

    PubMed  CAS  Google Scholar 

  • Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24(1):75–78

    PubMed  CAS  Google Scholar 

  • Wu G, Somlo S (2000) Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol Genet Metab 69(1):1–15

    PubMed  CAS  Google Scholar 

  • Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62(3):381–404

    PubMed  CAS  Google Scholar 

  • Wu Y, Dai XQ, Li Q, Chen CX, Mai W, Hussain Z, Long W, Montalbetti N, Li G, Glynne R, Wang S, Cantiello HF, Wu G, Chen XZ (2006) Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 15(22):3280–3292

    PubMed  CAS  Google Scholar 

  • Xiao Q, Prussia A, Yu K, Cui YY, Hartzell HC (2008) Regulation of bestrophin Cl channels by calcium: role of the C terminus. J Gen Physiol 132(6):681–692

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hempson SJ, Reif GA, Hedge AM, Wallace DP (2006) Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol 17(1):178–187

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279(39):40419–40430

    PubMed  CAS  Google Scholar 

  • Yoder BK, Tousson A, Millican L, Wu JH, Bugg CE Jr, Schafer JA, Balkovetz DF (2002) Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol 282(3):F541–F552

    PubMed  CAS  Google Scholar 

  • Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci USA 106(28):11558–11563

    PubMed  CAS  Google Scholar 

  • Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326

    PubMed  CAS  Google Scholar 

  • Yuasa T, Takakura A, Denker BM, Venugopal B, Zhou J (2004) Polycystin-1L2 is a novel G-protein-binding protein. Genomics 84(1):126–138

    PubMed  CAS  Google Scholar 

  • Yuasa T, Venugopal B, Weremowicz S, Morton CC, Guo L, Zhou J (2002) The sequence, expression, and chromosomal localization of a novel polycystic kidney disease 1-like gene, PKD1L1, in human. Genomics 79(3):376–386

    PubMed  CAS  Google Scholar 

  • Zanivan S, Gnad F, Wickstrom SA, Geiger T, Macek B, Cox J, Fassler R, Mann M (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7:5314--5326

    Google Scholar 

  • Zhang P, Luo Y, Chasan B, Gonzalez-Perrett S, Montalbetti N, Timpanaro GA, Cantero Mdel R, Ramos AJ, Goldmann WH, Zhou J, Cantiello HF (2009) The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 18(7):1238–1251

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Streets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Streets, A., Ong, A. (2014). TRPP2 in Polycystic Kidney Disease. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_24

Download citation

Publish with us

Policies and ethics