Skip to main content

Opinion-Based Collaborative Filtering to Solve Popularity Bias in Recommender Systems

  • Conference paper
Database and Expert Systems Applications (DEXA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8056))

Included in the following conference series:

Abstract

Existing recommender systems suffer from a popularity bias problem. Popular items are always recommended to users regardless whether they are related to users’ preferences. In this paper, we propose an opinion-based collaborative filtering by introducing weighting functions to adjust the influence of popular items. Based on conventional user-based collaborative filtering, the weighting functions are used in measuring users’ similarities so that the effect of popular items is decreased with similar opinions and increased with dissimilar ones. Experiments verify the effectiveness of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Kwon, Y.: Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques. IEEE Trans. on Knowl. and Data Eng. 24(5), 896–911 (2012)

    Article  Google Scholar 

  2. Bahmani, A., Sedigh, S., Hurson, A.: Ontology-based recommendation algorithms for personalized education. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 111–120. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Cooper, G.F., Moral, S. (eds.) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 43–52. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  4. Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. Journal of World Wide Web, 1–14 (2012)

    Google Scholar 

  5. Delgado, J., Ishii, N.: Memory-based weighted-majority prediction for recommender systems. In: ACM SIGIR 1999 Workshop on Recommender Systems: Algorithms and Evaluation (1999)

    Google Scholar 

  6. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

    Article  Google Scholar 

  7. Jia, D., Zeng, C., Nie, W., Li, Z., Peng, Z.: A new approach for date sharing and recommendation in social web. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 314–328. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Jin, R., Chai, J.Y., Si, L.: An automatic weighting scheme for collaborative filtering. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and development in Information Retrieval (SIGIR 2004), pp. 337–344. ACM, New York (2004)

    Chapter  Google Scholar 

  9. Lai, S., Xiang, L., Diao, R., Liu, Y., Gu, H., et al.: Hybrid Recommendation Models for Binary User Preference Prediction Problem. In: KDD-CUP 2011 Workshop (2011)

    Google Scholar 

  10. Merton, R.K.: The Matthew Effect in Science. Science 159(3810), 56–63 (1968)

    Article  Google Scholar 

  11. Oh, J., Park, S., Yu, H., Song, M., Park, S.: Novel Recommendation based on Personal Popularity Tendency. In: Proceedings of the 11th IEEE International Conference on Data Mining (ICDM 2011), pp. 507–516 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, X., Niu, Z., Chen, W. (2013). Opinion-Based Collaborative Filtering to Solve Popularity Bias in Recommender Systems. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 2013. Lecture Notes in Computer Science, vol 8056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40173-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40173-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40172-5

  • Online ISBN: 978-3-642-40173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics