Skip to main content

Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

Fodor and Pylyshyn in their 1988 paper denounced the claims of the connectionists, claims that continue to percolate through neuroscience. In they proposed that a physical symbol system was necessary for open-ended cognition. What is a physical symbol system, and how can one be implemented in the brain? A way to understand them is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality, elements lacking in most computational neuroscience models. To remedy this woeful situation, I examine cognitive architectures capable of open-ended cognition, and think how to implement them in a neuronal substrate. I motivate a cognitive architecture that evolves physical symbol systems in the brain. In Part 2 of this paper pair develops this architecture and proposes a possible neuronal implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ganti, T.: The Principles of Life. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  2. Fodor, J., Pylyshyn, Z.: Connectionism and cognitive architecture: A critical analysis. Cognition 28, 3–71 (1988)

    Article  Google Scholar 

  3. Penn, D., Holyoak, K., Povinelli, D.: Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences 31(2), 109–130 (2008)

    Google Scholar 

  4. Marcus, G.: The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT Press (2001)

    Google Scholar 

  5. Rougier, N., Noelle, D., Braver, T., Cohen, D., O’Reilly, R.: Prefrontal cortex and flexible cognitive control: Rules without symbols. Proc. Natl. Acad. Sci. U. S. A. 102, 7338–7343 (2005)

    Article  Google Scholar 

  6. Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks 12, 1131–1141 (1999)

    Article  Google Scholar 

  7. Gordon, G.: Hierarchical exhaustive construction of autonomously learning networks (2011)

    Google Scholar 

  8. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  9. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Computation 18(2), 245–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Izhikevich, E.M., Hoppensteadt, F.: Polychronous wavefront computations. International Journal of Bifurcation and Chaos 19, 1733–1739 (2009)

    Article  MathSciNet  Google Scholar 

  11. Ikegaya, Y., et al.: Synfire chains and cortical songs: Temporal modules of cortical activity. Science 304, 559–564 (2004)

    Article  Google Scholar 

  12. Holland, J., Reitman, J.: Cognitive systems based on adaptive algorithms. ACM SIGART Bulletin 63, 43–49 (1977)

    Google Scholar 

  13. Wilson, R.: Function approximation with a classifier system (2001)

    Google Scholar 

  14. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)

    Article  Google Scholar 

  15. Fernando, C.: Symbol manipulation and rule learning in spiking neuronal networks. Journal of Theoretical Biology 275, 29–41 (2011)

    Article  MathSciNet  Google Scholar 

  16. Price, G.: Selection and covariance. Nature 227, 520–521 (1970)

    Article  Google Scholar 

  17. Price, G.: The nature of selection. Journal of Theoretical Biology 175(3), 389–396 (1995)

    Article  Google Scholar 

  18. Maynard Smith, J.: The problems of biology. Oxford University Press, Oxford (1986)

    Google Scholar 

  19. Stout, A., Konidaris, G., Barto, A.: Intrinsically motivated reinforcement learning: A promising framework for developmental robotics (2005)

    Google Scholar 

  20. Newell, A.: Unified Theories of Cognition. Harvard University Press (1990)

    Google Scholar 

  21. Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  22. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)

    Google Scholar 

  23. Perkins, D.: Insight in minds and genes. In: Sternberg, R., Davidson, J. (eds.) The Nature of Insight, MIT Press, Cambridge (1995)

    Google Scholar 

  24. Simonton, D.: Foresight in insight? a darwinian answer. In: Sternberg, R., Davidson, J. (eds.) The Nature of Insight. MIT Press, Cambridge (1995)

    Google Scholar 

  25. Pigliucci, M.: Is evolvability evolvable? Nature Reviews Genetics 9, 75–82 (2008)

    Article  Google Scholar 

  26. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. U. S. A. 102(39), 13773–13778 (2005)

    Article  Google Scholar 

  27. Izquierdo, E., Fernando, C.: The evolution of evolvability in gene transcription networks (2008)

    Google Scholar 

  28. Parter, M., Kashtan, N., Alon, U.: Facilitated variation: How evolution learns from past environments to generalize to new environments. PLoS Computational Biology 4(11), e1000206 (2008)

    Google Scholar 

  29. Stulp, F., Sigaud, O.: Path integral policy improvement with covariance matrix adaptation (2012)

    Google Scholar 

  30. Goldberg, A.: Constructions: A Construction Grammar Approach to Argument Structure. University of Chicago Press., Chicago (1995)

    Google Scholar 

  31. Steels, L.: Experiments on the emergence of human communication. Trends in Cognitive Sciences 10(8), 347–349 (2006)

    Article  Google Scholar 

  32. Steels, L., De Beule, J.: Unify and merge in fluid construction grammar (2006)

    Google Scholar 

  33. Sternberg, R., Davidson, J.: The Nature of Insight. MIT Press, Cambridge (1995)

    Google Scholar 

  34. Szathmary, E., Fernando, C.: Concluding remarks. In: The Major Transitions Revisited, MIT Press, Cambridge (2009)

    Google Scholar 

  35. Andrew, A.: Machines that learn. The New Scientist, 1388–1391 (1958)

    Google Scholar 

  36. Uttley, A.: Conditional probability computing in a nervous system. In: Mechanisation of Thought Processes, vol. 1, pp. 121–147. H.M. Stationery Office, London (1959)

    Google Scholar 

  37. Butz, M., Shirinov, E., Reif, K.: Self-organizing sensorimotor maps plus internal motivations yield animal-like behavior. Adaptive Behavior 18(3-4) (2010)

    Google Scholar 

  38. Nessler, B., Pfeiffer, M., Maass, M.: Stdp enables spiking neurons to detect hidden causes of their inputs (2010)

    Google Scholar 

  39. Botvinick, M., Niv, Y., Barto, A.: Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition 113(3), 262–280 (2009)

    Article  Google Scholar 

  40. Sutton, R., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence 112, 181–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernando, C. (2013). Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics