Skip to main content

Fast Distributed Coloring Algorithms for Triangle-Free Graphs

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7966))

Included in the following conference series:

Abstract

Vertex coloring is a central concept in graph theory and an important symmetry-breaking primitive in distributed computing. Whereas degree-Δ graphs may require palettes of Δ + 1 colors in the worst case, it is well known that the chromatic number of many natural graph classes can be much smaller. In this paper we give new distributed algorithms to find (Δ/k)-coloring in graphs of girth 4 (triangle-free graphs), girth 5, and trees, where k is at most \((\frac{1}{4}-o(1))\ln\Delta\) in triangle-free graphs and at most (1 − o(1))ln Δ in girth-5 graphs and trees, and o(1) is a function of Δ. Specifically, for Δ sufficiently large we can find such a coloring in O(k + log* n) time. Moreover, for any Δ we can compute such colorings in roughly logarithmic time for triangle-free and girth-5 graphs, and in O(logΔ + logΔ logn) time on trees. As a byproduct, our algorithm shows that the chromatic number of triangle-free graphs is at most \((4+o(1))\frac{\Delta}{\ln\Delta}\), which improves on Jamall’s recent bound of \((67+o(1))\frac{\Delta}{\ln\Delta}\). Also, we show that (Δ + 1)-coloring for triangle-free graphs can be obtained in sublogarithmic time for any Δ.

This work is supported by NSF CAREER grant no. CCF-0746673, NSF grant no. CCF-1217338, and a grant from the US-Israel Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization. Wiley (2011)

    Google Scholar 

  2. Alon, N., Krivelevich, M., Sudakov, B.: Coloring graphs with sparse neighborhoods. Journal of Combinatorial Theory, Series B 77(1), 73–82 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in Δ) time. In: STOC 2009, pp. 111–120. ACM, New York (2009)

    Google Scholar 

  4. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. Distrib. Comput. 22, 363–379 (2010)

    Article  MATH  Google Scholar 

  5. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: FOCS 2012, pp. 321–330 (October 2012)

    Google Scholar 

  6. Beck, J.: An algorithmic approach to the lovász local lemma. Random Structures & Algorithms 2(4), 343–365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B.: Chromatic number, girth and maximal degree. Discrete Mathematics 24(3), 311–314 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin, O.V., Kostochka, A.V.: On an upper bound of a graph’s chromatic number, depending on the graph’s degree and density. Journal of Combinatorial Theory, Series B 23(2-3), 247–250 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brooks, R.L.: On colouring the nodes of a network. Mathematical Proceedings of the Cambridge Philosophical Society 37(02), 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  10. Catlin, P.A.: A bound on the chromatic number of a graph. Discrete Math. 22(1), 81–83 (1978)

    Article  MathSciNet  Google Scholar 

  11. Elkin, M.: Personal communication

    Google Scholar 

  12. Grable, D.A., Panconesi, A.: Fast distributed algorithms for Brooks-Vizing colorings. Journal of Algorithms 37(1), 85–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haxell, P.E.: A note on vertex list colouring. Comb. Probab. Comput. 10(4), 345–347 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Jamall, M.S.: A Brooks’ Theorem for Triangle-Free Graphs. ArXiv e-prints (2011)

    Google Scholar 

  15. Jamall, M.S.: A Coloring Algorithm for Triangle-Free Graphs. ArXiv e-prints (2011)

    Google Scholar 

  16. Jamall, M.S.: Coloring Triangle-Free Graphs and Network Games. Dissertation. University of California, San Diego (2011)

    Google Scholar 

  17. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley-Interscience series in discrete mathematics and optimization. Wiley (1995)

    Google Scholar 

  18. Kim, J.H.: On brooks’ theorem for sparse graphs. Combinatorics. Probability and Computing 4, 97–132 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kostochka, A.V., Mazuronva, N.P.: An inequality in the theory of graph coloring. Metody Diskret. Analiz. 30, 23–29 (1977)

    MATH  Google Scholar 

  20. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: SPAA 2009, pp. 138–144. ACM, New York (2009)

    Google Scholar 

  21. Lawrence, J.: Covering the vertex set of a graph with subgraphs of smaller degree. Discrete Mathematics 21(1), 61–68 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Algorithms and Combinatorics. Springer (2001)

    Google Scholar 

  24. Moser, R.A., Tardos, G.: A constructive proof of the general lovász local lemma. J. ACM 57(2), 11:1–11:15 (2010)

    Google Scholar 

  25. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decomposition. Journal of Algorithms 20(2), 356–374 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Monographs on Discrete Mathematics and Applications. SIAM (2000)

    Google Scholar 

  27. Reed, B.: The list colouring constants. Journal of Graph Theory 31(2), 149–153 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reed, B., Sudakov, B.: Asymptotically the list colouring constants are 1. J. Comb. Theory Ser. B 86(1), 27–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: ICS 2011, pp. 223–238 (2011)

    Google Scholar 

  30. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry breaking. In: PODC 2010, pp. 257–266. ACM, New York (2010)

    Google Scholar 

  31. Vizing, V.G.: Some unsolved problems in graph theory. Uspekhi Mat. Nauk 23(6(144)), 117–134 (1968)

    Google Scholar 

  32. Van Vu, H.: A general upper bound on the list chromatic number of locally sparse graphs. Comb. Probab. Comput. 11(1), 103–111 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pettie, S., Su, HH. (2013). Fast Distributed Coloring Algorithms for Triangle-Free Graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39212-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39212-2_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39211-5

  • Online ISBN: 978-3-642-39212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics