Skip to main content

Attributed Graph Similarity from the Quantum Jensen-Shannon Divergence

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7953))

Abstract

One of the most fundamental problem that we face in the graph domain is that of establishing the similarity, or alternatively the distance, between graphs. In this paper, we address the problem of measuring the similarity between attributed graphs. In particular, we propose a novel way to measure the similarity through the evolution of a continuous-time quantum walk. Given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic, and where a subset of the edges is labeled with the similarity between the respective nodes. With this compositional structure to hand, we compute the density operators of the quantum systems representing the evolution of two suitably defined quantum walks. We define the similarity between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators, and then we show how to build a novel kernel on attributed graphs based on the proposed similarity measure. We perform an extensive experimental evaluation both on synthetic and real-world data, which shows the effectiveness the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35, 13–32 (1999)

    Article  Google Scholar 

  2. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  MATH  Google Scholar 

  3. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences 98, 4569 (2001)

    Article  Google Scholar 

  4. Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road network. University of New Mexico (2003) (preprint)

    Google Scholar 

  5. Shapiro, L., Haralick, R.: Structural descriptions and inexact matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 504–519 (1981)

    Google Scholar 

  6. Barrow, H.G., Burstall, R.M.: Subgraph isomorphism, matching relational structures and maximal cliques. Inf. Process. Lett. 4, 83–84 (1976)

    Article  MATH  Google Scholar 

  7. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19, 255–259 (1998)

    Article  MATH  Google Scholar 

  8. Hidović, D., Pelillo, M.: Metrics for attributed graphs based on the maximal similarity common subgraph. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 299–313 (2004)

    Article  Google Scholar 

  9. Smola, A., Schölkopf, B.: Learning with kernels. Citeseer (1998)

    Google Scholar 

  10. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, p. 8. IEEE (2005)

    Google Scholar 

  12. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics (2009)

    Google Scholar 

  13. Haussler, D.: Convolution kernels on discrete structures. Technical report, UC Santa Cruz (1999)

    Google Scholar 

  14. Kempe, J.: Quantum random walks: an introductory overview. Contemporary Physics 44, 307–327 (2003)

    Article  Google Scholar 

  15. Emms, D., Wilson, R.C., Hancock, E.R.: Graph embedding using quantum commute times. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 371–382. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Rossi, L., Torsello, A., Hancock, E.R.: Approximate axial symmetries from continuous time quantum walks. In: Gimel’farb, G., Hancock, E.R., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen-Shannon divergence. Physical Review A 77, 052311 (2008)

    Google Scholar 

  18. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge university press (2010)

    Google Scholar 

  19. Torsello, A., Rossi, L.: Supervised learning of graph structure. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 117–132. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Wish, M., Carroll, J.D.: 14 Multidimensional scaling and its applications. Handbook of Statistics 2, 317–345 (1982)

    Article  Google Scholar 

  21. Briët, J., Harremoës, P.: Properties of classical and quantum jensen-shannon divergence. Physical Review A 79, 052311 (2009)

    Google Scholar 

  22. Nayar, S., Nene, S., Murase, H.: Columbia object image library (coil 100). Technical report, Tech. Report No. CUCS-006-96. Department of Comp. Science, Columbia University (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossi, L., Torsello, A., Hancock, E.R. (2013). Attributed Graph Similarity from the Quantum Jensen-Shannon Divergence. In: Hancock, E., Pelillo, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2013. Lecture Notes in Computer Science, vol 7953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39140-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39140-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39139-2

  • Online ISBN: 978-3-642-39140-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics