Skip to main content

Probabilistic Satisfiability and Coherence Checking through Integer Programming

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2013)

Abstract

This paper presents algorithms based on integer programming, both for probabilistic satisfiability and coherence checking. That is, we consider probabilistic assessments for both standard probability measures (Kolmogorovian setup) and full conditional measures (de Finettian coherence setup), and in both cases verify satisfiability/coherence using integer programming. We present empirical evaluation of our method, with evidence of phase-transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E.W.: A Primer of Probability Logic. CSLI Publications, Stanford (2002)

    Google Scholar 

  2. Andersen, K.A., Pretolani, D.: Easy cases of probabilistic satisfiability. Annals of Mathematics and Artificial Intelligence 33(1), 69–91 (2001)

    Article  MathSciNet  Google Scholar 

  3. Baioletti, M., Capotorti, A., Tulipani, S., Vantaggi, B.: Simplification rules for the coherent probability assessment problem. Annals of Mathematics and Artificial Intelligence 35(1-4), 11–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baioletti, M., Capotorti, A., Tulipani, S.: An empirical complexity study for a 2CPA solver. In: Bouchon-Meunier, Coletti, G., Yager, R.R. (eds.) Modern Information Processing: From Theory to Applications, pp. 73–84 (2005)

    Google Scholar 

  5. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  6. Biazzo, V., Gilio, A.: A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. International Journal of Approximate Reasoning 24, 251–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under coherence: Complexity and algorithms. Annals of Mathematics and Artificial Intelligence 45(1-2), 35–81 (2005)

    Article  MathSciNet  Google Scholar 

  8. Boole, G.: The Laws of Thought. Dover edition (1958)

    Google Scholar 

  9. Capotorti, A., Galli, L., Vantaggi, B.: How to use locally strong coherence in an inferential process based on upper-lower probabilities. Soft. Computing 7(5), 280–287 (2003)

    Article  MATH  Google Scholar 

  10. Chandru, V., Hooker, J.: Optimization Methods for Logical Inference. John Wiley & Sons Inc. (1999)

    Google Scholar 

  11. Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Trends in logic, vol. 15. Kluwer, Dordrecht (2002)

    Google Scholar 

  12. de Finetti, B.: Theory of Probability, vol. 1-2. Wiley, New York (1974)

    MATH  Google Scholar 

  13. Dubins, L.E.: Finitely additive conditional probability, conglomerability and disintegrations. Annals of Statistics 3(1), 89–99 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87, 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finger, M., De Bona, G.: Probabilistic satisfiability: Logic-based algorithms and phase transition. In: IJCAI, pp. 528–533 (2011)

    Google Scholar 

  16. Frisch, A.M., Haddawy, P.: Anytime deduction for probabilistic logic. Artificial Intelligence 69, 93–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gent, I.P., Walsh, T.: The SAT phase transition. In: European Conference on Artificial Intelligence, pp. 105–109 (1994)

    Google Scholar 

  18. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.H.: Probabilistic satisfiability. Journal of Complexity 4, 1–11 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hailperin, T.: Best possible inequalities for the probability of a logical function of events. American Mathematical Monthly 72, 343–359 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hailperin, T.: Boole’s Logic and Probability: a Critical Exposition from the Standpoint of Contemporary Algebra, Logic, and Probability Theory. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  21. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  22. Hammond, P.J.: Elementary non-Archimedean representations of probability for decision theory and games. In: Humphreys, P. (ed.) Patrick Suppes: Scientific Philosopher, vol. 1, pp. 25–59. Kluwer, Dordrecht (1994)

    Chapter  Google Scholar 

  23. Hansen, P., Jaumard, B.: Probabilistic Satisfiability. Technical Report G-96-31, Les Cahiers du GERAD, École Polytechique de Montréal (1996)

    Google Scholar 

  24. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic satisfiability. International Journal of Approximate Reasoning 47(2), 125–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for probabilistic logic. ORSA Journal on Computing 3(2), 135–148 (1991)

    Article  MATH  Google Scholar 

  26. Krauss, P.: Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academiae Scientiarum Hungaricae 19(3-4), 229–241 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172(6-7), 852–883 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. McGee, V.: Learning the impossible. In: Bells, E., Skyrms, B. (eds.) Probability and Conditionals, pp. 179–199. Cambridge University Press (1994)

    Google Scholar 

  29. Myerson, R.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)

    MATH  Google Scholar 

  30. Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Walley, P., Pelessoni, R., Vicig, P.: Direct algorithms for checking consistency and making inferences from conditional probability assessments. Journal of Statistical Planning and Inference 126(1), 119–151 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cozman, F.G., di Ianni, L.F. (2013). Probabilistic Satisfiability and Coherence Checking through Integer Programming. In: van der Gaag, L.C. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2013. Lecture Notes in Computer Science(), vol 7958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39091-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39091-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39090-6

  • Online ISBN: 978-3-642-39091-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics