Skip to main content

Amortized Communication Complexity of an Equality Predicate

  • Conference paper
Computer Science – Theory and Applications (CSR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7913))

Included in the following conference series:

  • 1105 Accesses

Abstract

We study the communication complexity of the direct sum of independent copies of the equality predicate. We prove that the probabilistic communication complexity of this problem is equal to O(N); the computational complexity of the proposed protocol is polynomial in the size of inputs. Our protocol improves the result achieved in 1991 by Feder et al. Our construction is based on two techniques: Nisan’s pseudorandom generator (1992, Nisan) and Smith’s string synchronization algorithm (2007, Smith).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univ. Press (1997)

    Google Scholar 

  2. Chuklin, A.: Effective protocols for low-distance file synchronization. arXiv:1102.4712 (2011)

    Google Scholar 

  3. Orlitsky, A.: Interactive communication of balanced distributions and of correlated files. SIAM Journal on Discrete Mathematics 6, 548–564 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nisan, N.: Pseudorandom Generators for Spacebounded Computation. Combinatorica 12(4), 449–461 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nisan, N., Widgerson, N.: Hardness vs. Randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canetti, R., Goldreich, O.: Bounds on Tradeoffs between Randomness and Communication Complexity. Computational Complexity 3(2), 141–167 (1990)

    Article  MathSciNet  Google Scholar 

  7. Newman, L.: Private vs. Common Random Bits in Communication Complexity. Information Processing Letters 39(2), 67–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Impagliazzo, R., Nisan, N., Widgerson, A.: Pseudorandomness for Network Algorithms. In: Proc. of the 26th ACM Symposium on Theory of Computing, pp. 356–364 (1994)

    Google Scholar 

  9. Smith, A.: Scrambling Adversarial Errors Using Few Random Bits, Optimal Information Reconciliation, and Better Private Codes. In: Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 395–404 (2007)

    Google Scholar 

  10. Nisan, N., Zukerman, D.: Randomness is Linear in Space. 1993 Journal of Computer and System Sciences 52(1), 43–52 (1996)

    Article  MATH  Google Scholar 

  11. Feder, T., Kushilevitz, E., Naor, M., Nisan, N.: Amortized Communication Complexity. SIAM J. Comput. 24(4), 736–750 (1991)

    Article  MathSciNet  Google Scholar 

  12. Bose, R.C.M., Ray-Chaudhuri, D.K.: On A Class of Error Correcting Binary Group Codes. Information and Control 3(1), 68–79 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berlekamp, E.R.: Nonbinary BCH decoding. IEEE Transactions on in Information Theory 14(2), 242 (1967)

    Article  Google Scholar 

  14. Karchmer, M., Raz, R., Wigderson, A.: On Proving Super-Logarithmic Depth Lower Bounds via the Direct Sum in Communication Complexity. In: Proc. of 6th IEEE Structure in Complexity Theory, pp. 299–304 (1991)

    Google Scholar 

  15. Parnafes, I., Raz, R., Wigderson, A.: Direct Product Results and the GCD Problem, in Old and New Communication Models. In: STOC 1997 Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 363–372 (1997)

    Google Scholar 

  16. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational Complexity and the Direct Sum Problem for Simultaneous Message Complexity. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science (2001)

    Google Scholar 

  17. Sherstov, A.: Strong Direct Produce Theorems for Quantum Communication and Query Complexity. In: STOC 2011 Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 41–50 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikishkin, V. (2013). Amortized Communication Complexity of an Equality Predicate. In: Bulatov, A.A., Shur, A.M. (eds) Computer Science – Theory and Applications. CSR 2013. Lecture Notes in Computer Science, vol 7913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38536-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38536-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38535-3

  • Online ISBN: 978-3-642-38536-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics