Skip to main content

Moonlighting Function of the Tubulin Cytoskeleton: Macromolecular Architectures in the Cytoplasm

  • Chapter
  • First Online:
  • 1990 Accesses

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 16))

Abstract

Cells face the enormous challenge of generating a single phenotype that must be coherent with myriad internal and external conditions. For such phenotypes to have multifarious but meaningful outputs entails the sensing, and integration of a wide variety of chemical and physical information, hence the coordination of metabolic and signaling processes. This sensing, integration, and coordination are carried out by the complex ultrastructural arrays and moonlighting functions of the cytoskeletal network. In the cellular context, the direction and potency of sensing are determined by the structure-related responses of the cytoskeletal network to the activity of individual macromolecules in conjunction with associated metabolites and nucleotides. These responses comprise the binding (hetero-association) of these macromolecules to the cytoskeleton and the consequences of this binding on the behavior of both partners, among them the stability and dynamics of the cytoskeleton, and the catalytic and regulatory properties of the individual proteins (and/or their specific complexes). The latter is of specific importance in regulation at a high level of organization via the formation of microcompartments in linear pathways or at metabolic crossroads. In addition, key players in many metabolic and signaling pathways are nucleotides such as ATP and GTP that have a crucial role in cytoskeleton-mediated events. These issues are illustrated with examples, and the sensing power of dynamic macromolecular associations is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexandre S, Cole G, Coutard S, Monnier C, Norris V, Margolin W, Yu X, Valleton J-M (2002) Interaction of FtsZ protein with a DPPE film. Colloids and Surfaces B: Biointerfaces 23:391–5

    Article  CAS  Google Scholar 

  • Amos LA, van den Ent F, Lowe J (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 16:24–31

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U S A 100(1):370–375. doi:10.1073/pnas.232703799, 232703799 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65

    Article  PubMed  CAS  Google Scholar 

  • Ferguson PL, Shaw GS (2004) Human S100B protein interacts with the Escherichia coli division protein FtsZ in a calcium-sensitive manner. J Biol Chem 279:18806–13

    Article  PubMed  CAS  Google Scholar 

  • Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, coordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–32

    Article  PubMed  CAS  Google Scholar 

  • Flores CL, Gancedo C (2011) Unraveling moonlighting functions with yeasts. IUBMB Life 63(7):457–62. doi:10.1002/iub.454

    Article  PubMed  CAS  Google Scholar 

  • Fridman K, Mader A, Zwerger M, Elia N, Medalia O (2012) Advances in tomography: probing the molecular architecture of cells. Nat Rev 13(11):736–42, nrm3453 [pii] 10.1038/nrm3453

    Article  CAS  Google Scholar 

  • Gonzalez JM, Velez M, Jimenez M, Alfonso C, Schuck P, Mingorance J, Vicente M, Minton AP, Rivas G (2005) Cooperative behavior of Escherichia coli cell-division protein FtsZ assembly involves the preferential cyclization of long single-stranded fibrils. Proc Natl Acad Sci USA 102:1895–900

    Article  PubMed  CAS  Google Scholar 

  • Gundogdu ME, Kawai Y, Pavlendova N, Ogasawara N, Errington J, Scheffers DJ, Hamoen LW (2011) Large ring polymers align FtsZ polymers for normal septum formation. EMBO J 30(3):617–26. doi:10.1038/emboj.2010.345, emboj2010345 [pii]

    Article  PubMed  Google Scholar 

  • Hou S, Wieczorek SA, Kaminski TS, Ziebacz N, Tabaka M, Sorto NA, Foss MH, Shaw JT, Thanbichler M, Weibel DB, Nieznanski K, Holyst R, Garstecki P (2012) Characterization of Caulobacter crescentus FtsZ using dynamic light scattering. J Biol Chem. doi:10.1074/jbc.M111.309492, M111.309492 [pii]

    Google Scholar 

  • Hsin J, Gopinathan A, Huang KC (2012) Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. Proc Natl Acad Sci U S A 109(24):9432–7. doi:10.1073/pnas.1120761109, 1120761109 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803(4):520–5. doi:10.1016/j.bbamcr.2010.01.022, S0167-4889(10)00035-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ingerson-Mahar M, Gitai Z (2012) A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev 36(1):256–66. doi:10.1111/j.1574-6976.2011.00316.x

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24(1):8–11, S0968-0004(98)01335-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (2003) Multifunctional proteins: examples of gene sharing. Ann Med 35(1):28–35

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (2011) Proteins with neomorphic moonlighting functions in disease. IUBMB Life 63(7):489–94. doi:10.1002/iub.504

    Article  PubMed  CAS  Google Scholar 

  • Kamath K, Oroudjev E, Jordan MA (2010) Determination of microtubule dynamic instability in living cells. Methods Cell Biol 97:1–14. doi:10.1016/S0091-679X(10)97001-5, S0091-679X(10)97001-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505. doi:10.1146/annurev-biochem-030409-143718

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GG, Laszlo L, Kovacs J, Jensen PH, Lindersson E, Botond G, Molnar T, Perczel A, Hudecz F, Mezo G, Erdei A, Tirian L, Lehotzky A, Gelpi E, Budka H, Ovadi J (2004) Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol Dis 17(2):155–62. doi:10.1016/j.nbd.2004.06.006, S0969-9961(04)00136-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci USA 101:3759–64

    Article  PubMed  CAS  Google Scholar 

  • Lehotzky A, Tirian L, Tokesi N, Lenart P, Szabo B, Kovacs J, Ovadi J (2004) Dynamic targeting of microtubules by TPPP/p25 affects cell survival. J Cell Sci 117(Pt 25):6249–59, 117/25/6249 [pii] 10.1242/jcs.01550

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–6

    Article  PubMed  CAS  Google Scholar 

  • Martin-Garcia F, Salvarelli E, Mendieta-Moreno JI, Vicente M, Mingorance J, Mendieta J, Gomez-Puertas P (2012) Molecular dynamics simulation of GTPase activity in polymers of the cell division protein FtsZ. FEBS Lett 586(8):1236–9. doi:10.1016/j.febslet.2012.03.042, S0014-5793(12)00242-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Mazzola JL, Sirover MA (2003) Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer’s disease fibroblasts. J Neurosci Res 71(2):279–85

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A 88(19):8460–4

    Article  PubMed  CAS  Google Scholar 

  • Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20(17):4821–6

    Article  PubMed  CAS  Google Scholar 

  • Moore A, Wordeman L (2004) The mechanism, function and regulation of depolymerizing kinesins during mitosis. Trends Cell Biol 14(10):537–46. doi:10.1016/j.tcb.2004.09.001, S0962-8924(04)00233-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M Jr, Skarstad K (2007) Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 71(1):230–53

    Article  PubMed  CAS  Google Scholar 

  • Norris V, Amar P, Legent G, Ripoll C, Thellier M, Ovadi J (2010) Hypothesis: the cytoskeleton is a metabolic sensor. In: Amar P, Képès F, Norris V (eds) Modelling complex biological systems in the context of genomics. EDP Sciences, Evry, pp 95–104

    Google Scholar 

  • Norris V, Amar P, Legent G, Ripoll C, Thellier M, Ovádi J (2013) Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor. BMC Biochem 14:3. doi:10.1186/1471-2091-14-3

    Article  PubMed  CAS  Google Scholar 

  • Olah J, Klivenyi P, Gardian G, Vecsei L, Orosz F, Kovacs GG, Westerhoff HV, Ovadi J (2008) Increased glucose metabolism and ATP level in brain tissue of Huntington’s disease transgenic mice. FEBS J 275(19):4740–55, EJB6612 [pii] 10.1111/j.1742-4658.2008.06612.x

    Article  PubMed  CAS  Google Scholar 

  • Orosz F, Kovacs GG, Lehotzky A, Olah J, Vincze O, Ovadi J (2004) TPPP/p25: from unfolded protein to misfolding disease: prediction and experiments. Biol Cell 96(9):701–11, S0248-4900(04)00164-9 [pii] 10.1016/j.biolcel.2004.08.002

    Article  PubMed  CAS  Google Scholar 

  • Ovadi J (1991) Physiological significance of metabolic channelling. J Theor Biol 152(1):1–22

    Article  PubMed  CAS  Google Scholar 

  • Ovadi J (2011) Moonlighting proteins in neurological disorders. IUBMB Life 63(7):453–6. doi:10.1002/iub.491

    Article  PubMed  CAS  Google Scholar 

  • Ovadi J, Orosz F (eds) (2009) Protein folding and misfolding: neurodegenerative diseases, vol 7, Focus on Structural Biology. Springer, Amsterdam

    Google Scholar 

  • Ovadi J, Saks V (2004) On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256–257:5–12

    Article  PubMed  Google Scholar 

  • Ovadi J, Srere PA (2000) Macromolecular compartmentation and channeling. Int J Cytol 192:255–80

    Article  CAS  Google Scholar 

  • Ovadi J, Orosz F, Hollan S (2004) Functional aspects of cellular microcompartmentation in the development of neurodegeneration: mutation induced aberrant protein-protein associations. Mol Cell Biochem 256–257(1–2):83–93

    Article  PubMed  Google Scholar 

  • Partikian A, Olveczky B, Swaminathan R, Li Y, Verkman AS (1998) Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol 140(4):821–9

    Article  PubMed  CAS  Google Scholar 

  • Popp D, Iwasa M, Erickson HP, Narita A, Maeda Y, Robinson RC (2010) Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J Biol Chem 285(15):11281–9, doi:M109.084079 [pii] 10.1074/jbc.M109.084079

    Article  PubMed  CAS  Google Scholar 

  • Porter KR, Beckerle M, McNiven M (1983) The cytoplasmic matrix. In: McIntosh JR (ed) Spatial organization of eukaryotic cells–a symposium in honor of K. R. Porter. Alan R. Liss, New York, pp 259–302

    Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19(1):45–50. doi:10.1038/83496

    Article  PubMed  CAS  Google Scholar 

  • Romberg L, Levin PA (2003) Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol 57:125–54

    Article  PubMed  CAS  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2012) VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta 1818(6):1526–35, doi:S0005-2736(11)00391-9 [pii] 10.1016/j.bbamem.2011.11.004

    Article  PubMed  CAS  Google Scholar 

  • Sloboda RD, Dentler WL, Rosenbaum JL (1976) Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry 15(20):4497–505

    Article  PubMed  CAS  Google Scholar 

  • Sriram G, Martinez JA, McCabe ER, Liao JC, Dipple KM (2005) Single-gene disorders: what role could moonlighting enzymes play? Am J Hum Genet 76(6):911–924, doi:S0002-9297(07)62890-0 [pii] 10.1086/430799

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72(4):1900–7, doi:S0006-3495(97)78835-0 [pii] 10.1016/S0006-3495(97)78835-0

    Article  PubMed  CAS  Google Scholar 

  • Thanedar S, Margolin W (2004) FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol 14:1167–73

    Article  PubMed  CAS  Google Scholar 

  • Tirian L, Hlavanda E, Olah J, Horvath I, Orosz F, Szabo B, Kovacs J, Szabad J, Ovadi J (2003) TPPP/p25 promotes tubulin assemblies and blocks mitotic spindle formation. Proc Natl Acad Sci U S A 100(24):13976–81, doi:10.1073/pnas.2436331100 2436331100 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2002) Solute and macromolecular diffusion in cellular aqueous compartments. Trends Biochem Sci 27:27–32

    Article  PubMed  CAS  Google Scholar 

  • Wágner G, Kovács J, Löw P, Orosz F, Ovádi J (2001) Tubulin and microtubule are potential targets for brain hexokinase binding. FEBS Lett 509(1):81–4

    Article  PubMed  Google Scholar 

  • Weart RB, Lee AH, Chien AC, Haeusser DP, Hill NS, Levin PA (2007) A metabolic sensor governing cell size in bacteria. Cell 130(2):335–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission (DCI-ALA/19.09.01/10/21526/245-297/ALFA 111(2010)29), the Hungarian National Scientific Research Fund Grants OTKA (T-101039), and Richter Gedeon Research Grant (RG-IPI-2011/TP5-001) to J. Ovádi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Ovádi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ovádi, J., Norris, V. (2014). Moonlighting Function of the Tubulin Cytoskeleton: Macromolecular Architectures in the Cytoplasm. In: Aon, M., Saks, V., Schlattner, U. (eds) Systems Biology of Metabolic and Signaling Networks. Springer Series in Biophysics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38505-6_7

Download citation

Publish with us

Policies and ethics