Skip to main content

Two Applications of Shape-Based Morphology: Blood Vessels Segmentation and a Generalization of Constrained Connectivity

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2013)

Abstract

Connected filtering is a popular strategy that relies on tree-based image representations: for example, one can compute an attribute on each node of the tree and keep only the nodes for which the attribute is sufficiently strong. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is done not in the space of the image, but on the space of shapes built from the image. Such a processing, that we called shape-based morphology [30], is a generalization of the existing tree-based connected operators. In this paper, two different applications are studied: in the first one, we apply our framework to blood vessels segmentation in retinal images. In the second one, we propose an extension of constrained connectivity. In both cases, quantitative evaluations demonstrate that shape-based filtering, a mere filtering step that we compare to more evolved processings, achieves state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Diri, B., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Transactions on Medical Imaging 28(9), 1488–1497 (2009)

    Article  Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Breen, E., Jones, R.: Attribute openings, thinnings, and granulometries. CVIU 64(3), 377–389 (1996)

    Google Scholar 

  4. Cao, F., Musé, P., Sur, F.: Extracting meaningful curves from images. JMIV 22, 159–181 (2005)

    Article  Google Scholar 

  5. DRIVE: Digital Retinal Images for Vessel Extraction, http://www.isi.uu.nl/Research/Databases/DRIVE/

  6. Felzenszwalb, P., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  7. Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 116–125. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Hoover, A., Kouznetsova, V., Goldbaum, M.H.: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19, 203–210 (2000)

    Article  Google Scholar 

  9. Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. PAMI 25(1), 131–137 (2003)

    Article  Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1987)

    Article  Google Scholar 

  11. Levillain, R., Géraud, T., Najman, L.: Why and how to design a generic and efficient image processing framework: The case of the Milena library. In: Proc. of ICIP, pp. 1941–1944 (2010), http://olena.lrde.epita.fr

  12. Martínez-Pérez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Bharath, A.A., Parker, K.H.: Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 90–97. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)

    Google Scholar 

  14. Mendonça, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  15. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. on Image Processing 9(5), 860–872 (2000)

    Article  Google Scholar 

  16. Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. Journal of Mathematical Imaging and Vision 40, 231–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edge-weighted graphs. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013)

    Google Scholar 

  18. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. PAMI 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  19. Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Fitzpatrick, J.M., Sonka, M. (eds.) SPIE Medical Imaging, vol. 5370, pp. 648–656. SPIE (2004)

    Google Scholar 

  20. Ouzounis, G., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Salembier, P., Serra, J.: Flat zones filtering, connected operators and filters by reconstruction. IEEE Trans. on Image Processing 3(8), 1153–1160 (1995)

    Article  MATH  Google Scholar 

  22. Salembier, P., Wilkinson, M.: Connected operators. IEEE Signal Processing Mag. 26(6), 136–157 (2009)

    Article  Google Scholar 

  23. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982)

    MATH  Google Scholar 

  24. Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. PAMI 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  25. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  26. STARE: STructured Analysis of the Retina, http://www.ces.clemson.edu/~ahoover/stare/

  27. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. PAMI 29(2), 272–285 (2007)

    Article  Google Scholar 

  28. Vachier, C., Meyer, F.: Extinction values: A new measurement of persistence. In: IEEE Workshop on Non Linear Signal/Image Processing, pp. 254–257 (1995)

    Google Scholar 

  29. Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: Application to object segmentation on the tree of shapes. In: ICIP, pp. 1577–1580. IEEE (2012)

    Google Scholar 

  30. Xu, Y., Géraud, T., Najman, L.: Morphological Filtering in Shape Spaces: Applications using Tree-Based Image Representations. In: Proc. of ICPR, pp. 485–488 (2012)

    Google Scholar 

  31. Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. ITIP 10(7), 1010–1019 (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Y., Géraud, T., Najman, L. (2013). Two Applications of Shape-Based Morphology: Blood Vessels Segmentation and a Generalization of Constrained Connectivity. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2013. Lecture Notes in Computer Science, vol 7883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38294-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38294-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38293-2

  • Online ISBN: 978-3-642-38294-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics