Skip to main content

All-Optical Ultrafast Switching and Logic with Bacteriorhodopsin Protein

  • Conference paper
Optical Supercomputing (OSC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7715))

Included in the following conference series:

Abstract

We present a detailed analysis of all-optical ultrafast switching with the unique photochromic bacteriorhodopsin (bR) protein, based on its early transitions (B570 →I460), in the pump-probe configuration. The transmission of a cw probe laser beam at 460 nm through bR is switched by a pulsed pump beam at 570 nm with high contrast and sub-ps switching. The effect of pump intensity, pump pulse width, absorption cross-section and lifetime of the I460 state on the switching characteristics has been studied in detail. Theoretical simulations are in good agreement with reported experimental results. The results have been used to design ultrafast all-optical NOT and the universal NOR and NAND logic gates with multiple pump laser pulses. The analysis demonstrates the applicability of bR for all-optical ultrafast operations in the simple pump-probe geometry and opens up exciting prospects for its use in optical supercomputing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roy, S.: Editorial, Special Issue on Optical Computing Circuits, Devices and Systems. IET Circ., Dev. and Syst. 5, 73–75 (2011)

    Article  Google Scholar 

  2. Caulfield, H.J., Dolev, S.: Why future supercomputing requires optics? Nature Photon. 4, 261–263 (2010)

    Article  Google Scholar 

  3. Haque, S.A., Nelson, J.: Toward organic all-optical switching. Science 327, 1466–1467 (2010)

    Article  Google Scholar 

  4. Szacilowski, K.: Digital information processing in molecular systems. Chem. Rev. 108, 3481–3548 (2008)

    Article  Google Scholar 

  5. DeSilva, A.P.: Molecular Computing: A layer of logic. Nature 454, 417–418 (2008)

    Article  Google Scholar 

  6. Roy, S., Yadav, C.: All-optical ultrafast logic gates based on saturable to reverse saturable absorption transition in CuPc-doped PMMA thin films. Opt. Commun. 284, 4435–4440 (2011)

    Article  Google Scholar 

  7. Hampp, N.: Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 100, 1755–1776 (2000)

    Article  Google Scholar 

  8. Lukashev, E.P., Robertson, B.: Bacteriorhodopsin retains its light-induced proton pumping function after being heated to 1400C. Bioelectrochem. Bioenerg. 37, 157–160 (1995)

    Article  Google Scholar 

  9. Stuart, J.A., Mercy, D.L., Wise, K.J., Birge, R.R.: Volumetric optical memory based on bacteriorhodopsin. Synth. Metals 127, 3–15 (2002)

    Article  Google Scholar 

  10. Singh, C.P., Roy, S.: All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates. Optics Commun. 218, 55–66 (2003)

    Article  Google Scholar 

  11. Chen, G., Lu, W., Xu, X., Tian, J., Zhang, C.: All-optical time-delay switch based on grating buildup time of two-wave mixing in a bacteriorhodopsin film. Appl. Opt. 48, 5205–5211 (2009)

    Article  Google Scholar 

  12. Rao, D.V.G.L.N., Aranda, F.J., Rao, D.N., Chen, Z., Akkara, J.A., Kaplan, D.L., Nakashima, M.: All-optical logic gates with bacteriorhodopsin films. Opt. Commun. 127, 193–199 (1996)

    Article  Google Scholar 

  13. Joseph, J., Aranda, F.J., Rao, D.V.G.L.N., DeCristofano, B.S.: Optical computing and information processing with protein complex. Opt. Memory Neural Netw. 6, 275–285 (1997)

    MATH  Google Scholar 

  14. Zhang, T., Zhang, C., Fu, G., Li, Y., Gu, L., Zhang, G., Song, Q.W., Parsons, B., Birge, R.R.: All-optical logic gates using bacteriorhodopsin films. Opt. Eng. 39, 527–534 (2000)

    Article  Google Scholar 

  15. Li, Y., Sun, Q., Tian, J., Zhang, G.: Optical boolean logic gates based on degenerate multi-wave mixing in bR films. Opt. Mater. 23, 285–288 (2003)

    Article  Google Scholar 

  16. Roy, S., Singh, C.P., Reddy, K.P.J.: Generalized model for all-optical light modulation in bacteriorhodopsin. J. Appl. Phys. 90, 3679–3689 (2001)

    Article  Google Scholar 

  17. Sharma, P., Roy, S.: Effect of probe beam intensity on all-optical switching based on excited-state absorption. Opt. Mat. Exp. 2, 548–565 (2012)

    Article  Google Scholar 

  18. Huang, Y., Wu, S., Zhao, Y.: All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics. Opt. Exp. 12, 895–906 (2004)

    Article  Google Scholar 

  19. Roy, S., Prasad, M., Topolancik, J., Vollmer, F.: All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J. Appl. Phys. 107, 053115-1–053115-9 (2010)

    Google Scholar 

  20. Roy, S., Sethi, P., Topolancik, J., Vollmer, F.: All-optical reversible logic gates with optically controlled bacteriorhodopsin protein-coated microresonators. Adv. Opt. Technol. 2012, 727206-12 (2012)

    Google Scholar 

  21. Der, A., Valkai, S., Fabian, L., Ormos, P., Ramsden, J.J., Wolff, E.K.: Integrated optical switching based on the protein bacteriorhodopsin. Photochem. Photobio. 83, 393–396 (2007)

    Article  Google Scholar 

  22. Fabian, L., Wolff, E.K., Oroszi, L., Ormos, P., Der, A.: Fast integrated optical switching by the protein bacteriorhodopsin. Appl. Phys. Lett. 97, 0233051-3 (2010)

    Google Scholar 

  23. Petrich, J.W., Breton, J., Martin, J.L., Antonetti, A.: Femtosecond absorption spectroscopy of light-adapted and dark-adapted bacteriorhodopsin. Chem. Phys. Lett. 137, 369–375 (1987)

    Article  Google Scholar 

  24. Mathies, R.A., Cruz, C.H.B., Pollard, W.T.: Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 240, 777–779 (1988)

    Article  Google Scholar 

  25. Dobler, J., Zinth, W., Kaiser, W., Oesterhelt, D.: Excited-State reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy. Chem. Phys. Lett. 144, 215–220 (1988)

    Article  Google Scholar 

  26. Ye, T., Friedman, N., Gat, Y., Atkinson, G.H., Sheves, M., Ottolenghi, M., Ruhman, S.: On the nature of the primary light-induced events in bacteriorhodopsin: Ultrafast spectroscopy of native and C13 = C14 locked Pigments. J. Phys. Chem. B 103, 5122–5130 (1999)

    Article  Google Scholar 

  27. Aharoni, A., Hou, B., Friedman, N., Ottolenghi, M., Rousso, I., Ruhman, S., Sheves, M., Ye, T., Zhang, Q.: Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin. Biochem. 66, 1210–1219 (2001)

    Google Scholar 

  28. Kobayashi, T., Yabushita, A., Saito, T., Ohtani, H.: Real time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414, 531–534 (2001)

    Article  Google Scholar 

  29. Kobayashi, T., Yabushita, A., Saito, T., Ohtani, H., Tsuda, M.: Sub-5 fs-real time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Photochem. Photobio. 83, 363–368 (2007)

    Article  Google Scholar 

  30. Yishi, W., Sheng, Z., Xicheng, A., Kunsheng, H., JianPing, Z.: Ultrafast isomerization dynamics of retinal in bacteriorhodopsin as revealed by femtosecond absorption spectroscopy. Chin. Sci. Bull. 53, 1972–1977 (2008)

    Article  Google Scholar 

  31. Yabushita, A., Kobayashi, T.: Primary conformation change in bacteriorhodopsin on photoexcitation. Biophys. J. 96, 1447–1461 (2009)

    Article  Google Scholar 

  32. Briand, J., Leonard, J., Haacke, S.: Ultrafast photo-induced reaction dynamics in bacteriorhodopsin and its Trp mutants. J. Opt. 12, 1–14 (2010)

    Article  Google Scholar 

  33. Abramczyk, H.: Mechanisms of energy dissipation and ultrafast primary events in photostable systems: H-bond, excess electron, biological photoreceptors. Vibrational Spectroscopy 58, 1–11 (2012)

    Article  Google Scholar 

  34. Fabian, L., Heiner, Z., Mero, M., Kiss, M., Wolff, E.K., Ormos, P., Osvay, K., Der, A.: Protein based ultrafast photonic switching. Opt. Exp. 19, 18861–18870 (2011)

    Article  Google Scholar 

  35. Biesso, A., Qian, W., Sayed, M.: Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodospin. J. Am. Chem. Soc. 130, 3258–3259 (2007)

    Article  Google Scholar 

  36. Cheng, C., Lee, Y., Chu, L.: Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactants treatments. Chem. Phys. Lett. 539-540, 151–156 (2012)

    Google Scholar 

  37. Wu, P., Rao, D.V.G.L.N., Kimball, B.R., Nakashima, M., DeCristofano, B.S.: Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films. Appl. Phys. Lett. 81, 3888–3890 (2002)

    Article  Google Scholar 

  38. Prokhorenko, V., Halpin, A., Johnson, P., Miller, R., Brown, L.: Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J. Chem. Phys. 134, 085105(1–5) (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roy, S., Yadav, C. (2013). All-Optical Ultrafast Switching and Logic with Bacteriorhodopsin Protein. In: Dolev, S., Oltean, M. (eds) Optical Supercomputing. OSC 2012. Lecture Notes in Computer Science, vol 7715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38250-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38250-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38249-9

  • Online ISBN: 978-3-642-38250-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics