Skip to main content

Severe Plastic Deformation, A Tool to Enhance Thermoelectric Performance

  • Chapter
  • First Online:
Book cover Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

High pressure torsion (HPT) is one of the methods introducing severe plastic deformation (SPD). Particularly HPT has been applied to skutterudites and has shown to be a valuable and efficient technique for grain refinement in the nanometer regime via increasing the concentration of point defects, dislocations and high-angle grain boundaries. These microstructural changes significantly enhance phonon scattering. The decrease of crystallite size causes enhanced microhardness, i.e. Hall-Petch strengthening applies. For a thermoelectric material HPT may slightly enhance the Seebeck coefficient and electrical resistivity, but significantly decreases thermal conductivity and concomitantly increases ZT. The article intends to give a comprehensive view on all data available on the influence of the various techniques of severe plastic deformation on thermoelectric materials in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Slack, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC Boca Raton Press Publ, FL, 1995), p. 407

    Google Scholar 

  2. L.E. Bell, Science 321, 1457–1461 (2008)

    Google Scholar 

  3. C.M. Bhandari, in Thermoelectris Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Press Boca Raton, FL, 2006), pp. 1–15. (chapter 14)

    Google Scholar 

  4. J. Callaway, Phys. Rev. 113, 1046 (1959)

    Google Scholar 

  5. J. Callaway, J. von Baeyer, Phys. Rev. 120, 1149 (1960)

    Google Scholar 

  6. J. Callaway, Phys. Rev. 122, 787 (1961)

    Google Scholar 

  7. T.M. Tritt, Thermal Conductivity, in Theory, Properties and Applications, ed. by T.M. Tritt (Kluwer Academic Plenum Publishers, New York, Boston, London, Moscow, 2004)

    Google Scholar 

  8. D. Cahill, R. Pohl, Solid State Commun. 70(10), 927 (1989)

    Google Scholar 

  9. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdel, S. Yamanka, G.J. Snyder, Science 321(5888), 554–557 (2008)

    Google Scholar 

  10. L. Hicks, M. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Google Scholar 

  11. M.S. Dresselhaus, J.P. Heremans, Recent Developments in Low Dimensional Thermoelectric Material, in Thermoelectric Handbook: Macro to Nanostructured Materials, ed. by D.M. Rowe (CRC Press Inc. Boca Raton, FL, USA, 2004)

    Google Scholar 

  12. M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, J.Y. Ying, G. Chen, Microscale Thermophys. Eng. 3, 89–100 (1999)

    Google Scholar 

  13. M.S. Dresselhaus, Y.-M. Lin, T. Koga, S.B. Cronin, O. Rabin, M.R. Black, G. Dresselhaus, in Semiconductor and Semimetals: Current Trend in Thermoelectric Materials Research, ed. by T. Tritt (Academic Press, San Diego, CA, USA, 2000)

    Google Scholar 

  14. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1–12 (2007)

    Google Scholar 

  15. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466–479 (2009)

    Google Scholar 

  16. G.S. Nolas, J. Sharp, H. Goldsmith (eds.), Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001)

    Google Scholar 

  17. T.M. Tritt, M.A. Subramanian, MRS Bull. 31, 188 (2006) (and references therein)

    Google Scholar 

  18. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Int. Mater. Rev. 48, 45 (2003)

    Google Scholar 

  19. L. Hicks, M. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993)

    Google Scholar 

  20. L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M.J. Zehetbauer, J. Alloys Compd. 490, 19–25 (2010)

    Google Scholar 

  21. L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M.J. Zehetbauer, J. Wosik, G.E. Nauer, J. Alloys Compd. 481, 106–115 (2009)

    Google Scholar 

  22. G. Rogl, M. Zehetbauer, M. Kerber, P. Rogl, E. Bauer, Mater. Sci. Forum 667–669, 1089–1094 (2011)

    Google Scholar 

  23. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Zehetbauer, Intermetallics 19, 546–555 (2011)

    Google Scholar 

  24. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Zehetbauer, Solid State Phenom. 170, 2435–2444 (2011)

    Google Scholar 

  25. G. Rogl, A. Grytsiv, N. Melnychenko-Koblyuk, E. Bauer, S. Laumann, P. Rogl, J. Phys.: Condens. Matter 23, 275601–275612 (2011)

    Google Scholar 

  26. X. Shi, J. Yang, R. Salvador, M. Cji, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc. 133, 7837–7846 (2011)

    Google Scholar 

  27. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, J. Met. 58, 33–39 (2006)

    Google Scholar 

  28. R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Hoeppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, T.G. Langdon, Adv. Eng. Mater. 9, 527 (2007)

    Google Scholar 

  29. M.J. Zehetbauer, Y.T. Zhu (eds.), Modeling of Strength and Strain Hardening of Bulk Nanostructured Materials, in Bulk Nanostructured Material (Wiley VCH, Weinheim, 2009)

    Google Scholar 

  30. P.W. Bridgman, in Studies in Large Scale Plastic Flow and Fracture, ed. by P.W. Bridgman (McGraw-Hill, NY, USA, 1952)

    Google Scholar 

  31. R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R.S. Musalimov, N.K. Tsenev, Dokl. Akad. Nauk SSSR 301, 251 (1988)

    Google Scholar 

  32. R.Z. Valiev, R.R. Mulykov, V.V. Ovchinnikov, Phil. Mag. Lett. 62, 253 (1990)

    Google Scholar 

  33. R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. A137, 35 (1991)

    Google Scholar 

  34. R.S. Musalimov, R.Z. Valiev, Scripta Metall. Mater. 27, 1685 (1992)

    Google Scholar 

  35. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Mater. Sci. Eng. A 168, 141–148 (1993)

    Google Scholar 

  36. V.M. Segal, Mater. Sci. Eng. A 197, 157–164 (1995)

    Google Scholar 

  37. J.T. Wang, Mater. Sci. Forum 503–504, 363 (2006)

    Google Scholar 

  38. T.G. Langdon, Mater. Sci. Forum 667–669, 9–14 (2011)

    Google Scholar 

  39. J.-T. Im, K.T. Hartwig, J. Sharp, Acta Mater. 52, 49–55 (2004)

    Google Scholar 

  40. J.-T. Im, K.T. Hartwig, J. Sharp, in Proceedings of ICT 2007, Jeju, Korea, IEEE, Piscataway, New York, NY, USA, 978–1-4244-263, p. 408–412

    Google Scholar 

  41. V.M. Segal, V.I. Reznikov, A.E. Dobyshevskiy, V.I. Kopylov, Russian Metal. 1, 99 (1981). (English translation)

    Google Scholar 

  42. V.M. Segal, Mater. Sci. Eng. A 271, 322–333 (1999)

    Google Scholar 

  43. R.Z. Valiev, Mater. Sci. Eng. A 234–236, 59–66 (1997)

    Google Scholar 

  44. Y. Iwahashi, Z. Horita, N. Nemoto, T.G. Langdon, Acta Mater. 45(11), 4733–4741 (1997)

    Google Scholar 

  45. K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46(5), 1589–1599 (1998)

    Google Scholar 

  46. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baro, J.A. Szpunar, T.G. Langdon, Acta Mater. 51, 753 (2003)

    Google Scholar 

  47. N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, V.A. Sazonova, Fiz. Metal. Metalloved. 61, 1170–1177 (1986)

    Google Scholar 

  48. O. Bouaziz, Y. Estrin, H.S. Kim, Adv. Eng. Mater. 11, 982–985 (2009)

    Google Scholar 

  49. D. Vasilevsky, A. Sumi, J.M. Simard, R. Masut, Appl. Phys. 92, 2610–2613 (2002)

    Google Scholar 

  50. S.J. Hong, B.S. Chun, Mater. Sci. Eng. A 356, 345–351 (2003)

    Google Scholar 

  51. S. Miura, Y. Satob, K. Fukuda, K. Nishimura, K. Ikeda, Mater. Sci. Eng. A 277, 244–249 (2000)

    Google Scholar 

  52. R. Pippan, High Pressure Torsion—Features and Applications, in Bulk Nanostructured Materials, ed. by M.J. Zehetbauer, Y.T. Zhu (Wiley VCH, Weinheim, 2009), pp. 217–232

    Google Scholar 

  53. M.J. Zehetbauer, Y. Estrin, Modeling of Strength and Strain Hardening of Bulk Nanostructured Materials, in Bulk Nanostructured Materials, ed. by M.J. Zehetbauer, Y.T. Zhu (Wiley VCH, Weinheim, 2009), pp. 109–135

    Google Scholar 

  54. M. Zehetbauer, V. Seumer, Acta Metall. Mater 41, 57–88 (1993)

    Google Scholar 

  55. M. Zehetbauer, H.P. Stüwe, A. Vorhauer, E. Schafler, J. Kohout, Adv. Eng. Mater. 5, 33–37 (2003)

    Google Scholar 

  56. M. Zehetbauer, J. Kohout, E. Schafler, F. Sachslehner, A. Dubravina, J. Alloys Compd. 378, 329–334 (2004)

    Google Scholar 

  57. M. Müller, M. Zehetbauer, A. Borbely, T. Ungar, Scr. Mater. 35, 1461–1466 (1996)

    Google Scholar 

  58. T. Ungar, M. Zehetbauer, Scr. Mater. 35, 1467–1473 (1996)

    Google Scholar 

  59. L. Zhang, A. Grytsiv, B. Bonarski, M. Kerber, D. Steman, E. Schafler, P. Rogl, E. Bauer, G. Hilscher, M. Zehetbauer, J. Alloys Compd. 494, 78–83 (2010)

    Google Scholar 

  60. M. Ashida, T. Hamachiyo, K. Hasezaki, H. Matsunoshita, M. Kai, Z. Horita, Mater. Sci. Forum 584–586, 1006 (2008)

    Google Scholar 

  61. M. Ashida, T. Hamachiyo, K. Hasezaki, H. Matsunoshita, M. Kai, Z. Horita, J. Phys. Chem. Solids 70, 1089–1092 (2009)

    Google Scholar 

  62. Z.M. Sun, H. Hashimoto, N. Keawprak, A.B. Ma, L.F. Li, M.W. Barsoum, J. Mater. Res. 20(4), 895–903 (2005)

    Google Scholar 

  63. S.S. Kim, S. Yamamoto, T. Aizawa, J. Alloys Compd. 375, 107–113 (2004)

    Google Scholar 

  64. T. Hayashi, M. Sekine, J. Suzuki, Y. Horio, Mater. Trans. 47(8), 1941–1944 (2006)

    Google Scholar 

  65. T. Hayashi, Y. Horio, H. Takizawa, Mater. Trans. 51(10), 1914–1918 (2010)

    Google Scholar 

  66. C.H. Lim, K.T. Kim, Y.H. Kim, C.H. Lee, Mater. Trans. 49(4), 889–891 (2008)

    Google Scholar 

  67. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, K. Li, J. Alloys Compd. 461, 9–13 (2008)

    Google Scholar 

  68. N. Gothard, G. Wilks, T.M. Tritt, J.E. Spowart, J. Electron. Mater. 39(9), 1909–1913 (2010)

    Google Scholar 

  69. Z.-C. Chen, K. Suzuki, S. Miura, K. Nishimura, K. Ikeda, Mater. Sci. Eng. A 500, 70–78 (2009)

    Google Scholar 

  70. T. Hamachiyo, M. Ashida, K. Hasezaki, H. Matsunoshita, M. Kai, Z. Horita, Mater. Trans. 50(7), 1592–1595 (2009)

    Google Scholar 

  71. L.P. Hu, X.H. Liu, H.H. Xie, J.J. Shen, T.J. Zhu, X.B. Zhao, Acta Mater. 60, 4431–4437 (2012)

    Google Scholar 

  72. N.I. Kourov, V.G. Pushin, A.V. Korolev, V.A. Kazantsev, E.B. Marchenkova, A.N. Uksusnikov, Phys. of Metals and Metallography 103, 270–277 (2007), [original text in Russian: Fizika Metallov i Metallovedemie, 108(3), 280–287 (2007)]

    Google Scholar 

  73. G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, E. Bauer, Acta Mater. 60, 2146–2157 (2012)

    Google Scholar 

  74. G. Rogl, Z. Aabdin, E. Schafler, J. Horky, D. Setman, M. Zehetbauer, M. Kriegisch, O. Eibl, A. Grytsiv, E. Bauer, M. Reinecker, W. Schranz, P. Rogl, J. Alloys Compd. 537, 183–189 (2012)

    Google Scholar 

  75. G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, in Proceedings of NATO Advanced Research Workshop, Hvar, Croatia, September 2011, NATO Science for Peace and Security Series B: Physics and Biophysics, ed. by V. Zlatic and A. Hewson, Springer Science and Business Media B.V., 7 (2012) 81–91

    Google Scholar 

  76. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Zehetbauer, Intermetallics 10, 57–60 (2010)

    Google Scholar 

  77. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Zehetbauer, M.B. Kerber, S. Puchegger, Intermetallics 18, 2435–2444 (2010)

    Google Scholar 

  78. J.J. Rodriguez-Carvajal, FULLPROF, Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress (Int. Union of Crystallography, Talence, France, 1990), p. 127

    Google Scholar 

  79. W. Wacha, Program STRUKTUR (University of Technology, Vienna, Austria, Diploma thesis, 1989)

    Google Scholar 

  80. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Zehetbauer, Intermetallics 18, 394–398 (2010)

    Google Scholar 

  81. T. Ungar, J. Gubicza, G. Ribarik, A. Borbely, J. Appl. Crystallogr. 34, 298–310 (2001)

    Google Scholar 

  82. T. Ungar, E. Schafler, J. Gubicza, Microstructure of Bulk Nanomaterials Determined by X-Ray Line Profile Analysis, in Bulk Nanostructured Materials, ed. by M.J. Zehetbauer, Y.T. Zhu (VCH Wiley, New York, 2009)

    Google Scholar 

  83. G. Ribarik, T. Ungar, J. Gubicza, J. Appl. Crystallogr. 34, 669 (2001)

    Google Scholar 

  84. G. Ribarik, T. Ungar, J. Gubicza, J. Mater. Sci. Eng. A 387–389, 343 (2004)

    Google Scholar 

  85. J.I. Langford, D. Louer, P. Scardi, J. Appl. Cryst. 33, 964–974 (2000)

    Google Scholar 

  86. C.E. Krill, R. Birringer, Philos. Mag. A 77, 621–640 (1998)

    Google Scholar 

  87. ChD Terwilliger, Y.M. Chiang, Acta Metall. Mater. 43, 319–328 (1995)

    Google Scholar 

  88. T. Ungar, A. Borbely, G.R. Goren-Muginstein, S. Berger, A.R. Rosen, Nanostruct. Mater. 11, 103–113 (1999)

    Google Scholar 

  89. W.C. Hinds, Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles (Wiley, New York, 1982)

    Google Scholar 

  90. M.B. Kerber, M.J. Zehetbauer, E. Schafler, F.C. Spieckermann, S. Bernstorff, T. Ungar, JOM 63(7), 61–70 (2011)

    Google Scholar 

  91. D. Eyidi, O. Eibl, Micron. 33, 499 (2002)

    Google Scholar 

  92. M. Rotter, H. Müller, E. Gratz, M. Dörr, M. Löwenhaupt, Rev. Sci. Instrum. 69, 2742 (1998)

    Google Scholar 

  93. G. Rogl, L. Zhang, P. Rogl, A. Grytsiv, M. Falmbigl, D. Rajs, M. Kriegisch, H. Müller, E. Bauer, J. Koppensteiner, W. Schranz, M. Zehetbauer, H. Henkie, M.B. Maple, J. Appl. Phys. 107, 043507 (2010)

    Google Scholar 

  94. G.D. Mukherjee, C. Bansal, A. Chatterjee, Phys. Rev. Lett. 76(11), 1876 (1996)

    Google Scholar 

  95. L. Zhang, G. Rogl, A. Grytsiv, S. Puchegger, J. Koppensteiner, F. Spieckermann, H. Kabelka, M. Reinecker, P. Rogl, W. Schranz, M. Zehetbauer, M.A. Carpenter, Mater. Sci. Eng. B 170, 26–31 (2010)

    Google Scholar 

  96. G. Rogl, P. Rogl, Adv. Mater. Sci. 3, 4 (2011)

    Google Scholar 

  97. G. Rogl, S. Puchegger, M. Zehetbauer, A. Grytsiv, P. Rogl, in Proceedings of Material Research Soc Symposium, Spring, San Francisco, USA, vol. 1325 (2011)

    Google Scholar 

  98. P. Scherrer, Nachr. Ges. Wiss. Göttingen 98 (1918)

    Google Scholar 

  99. E. Schafler, Scr. Mater. 64, 130–132 (2011)

    Google Scholar 

  100. W. Huang, Central South Univ. Changsha, China, private communication

    Google Scholar 

  101. R. Lackner, PhD thesis, Vienna University of Technology, Vienna, 2007

    Google Scholar 

  102. F. Röhrbacher, Master thesis, Vienna University of Technology, Vienna, 2007

    Google Scholar 

  103. C. Paul, E. Bauer, S. Berger, A. Grytsiv, G. Hilscher, H. Michor, P. Rogl, J. Mag, Mag. Mater. 272–276, 373–374 (2004)

    Google Scholar 

  104. E. Bauer, S. Berger, C. Paul, M. Della Mea, G. Hilscher, H. Michor, M. Reissner, W. Steiner, A. Grytsiv, P. Rogl, E.W. Scheidt, Phys. Rev. B 66, 214421 (2002)

    Google Scholar 

  105. R.D. Schmidt, E.D. Case, J.E. Ni, J.S. Sakamoto, R.M. Trejo, E. Lara-Curzio, E.A. Payzant, M.J. Kirkham, R.A. Peascoe-Meisner, Philos. Mag. 92(10), 1261–1286 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerda Rogl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rogl, G., Rogl, P., Bauer, E., Zehetbauer, M. (2013). Severe Plastic Deformation, A Tool to Enhance Thermoelectric Performance. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_10

Download citation

Publish with us

Policies and ethics