Skip to main content

Perfusion Measurements: Brain

  • Living reference work entry
  • First Online:
PanVascular Medicine

Abstract

Perfusion imaging of the brain encompasses a broad range of imaging modalities, involving invasive and noninvasive techniques, employing endogenous and exogenous tracer that emit nonionizing or ionizing radiation. Each of these examinations bears its own risks and provides specific benefits, and appropriate medical knowledge is required to select the correct test for each of the specific clinical settings. In this chapter, we shall provide a review of this technology and discuss nuclear perfusion techniques, including positron emission tomography (PET) and single-photon emission computed tomography (SPECT); perfusion computed tomography (PCT); MR perfusion techniques such as dynamic susceptibility contrast (DSC) MRI, dynamic contrast-enhanced (DCE) MRI, and arterial spin labeling (ASL) MRI; and transcranial Doppler (TCD) ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASL (arterial spin labeling):

MR perfusion technique that uses water molecules in blood instead of injected contrast to evaluate cerebral perfusion.

Autoregulation:

Response of the cerebral vasculature to decreased perfusion.

CBF (cerebral blood flow):

Blood supply in the brain per unit of time.

CBV (cerebral blood volume):

Cerebral blood volume within the capillary bed.

DCE (dynamic contrast enhancement):

Dynamic MR imaging technique that tracks the circulation and recirculation of a bolus of contrast material to evaluate blood-brain barrier permeability.

DSC (dynamic susceptibility contrast):

Dynamic MR technique that tracks a first pass of a bolus of contrast material through signal decrease as the contrast enters the capillary bed.

MTT (mean transit time):

Length of time a volume of blood spends traveling in the cerebral capillaries.

OEF (oxygen extraction fraction):

Fraction of oxygen extracted by blood.

PET (positron emission tomography):

Nuclear imaging technique that allows assessment of cerebral perfusion and metabolic activity.

SPECT (single-photon emission computed tomography):

Nuclear imaging technique which displays tomographic imaging with the use of gamma rays.

T1 MRI sequence:

Also referred to as T1W1. A basic pulse sequence that relates to a short TR (repetition time) and a short TE (echo time) and gives structural information.

T2 MRI sequence:

Also referred to as T2WI. A basic pulse sequence that relates to a long TR and a long TE and gives pathologic information (edema).

T2* MRI sequence:

Pulse sequence that relates to T2 relaxation time and magnetic field inhomogeneity.

TCD (transcranial Doppler):

Ultrasound technique that evaluates cerebral blood flow in large cerebral arteries.

References

  • Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774

    CAS  PubMed  Google Scholar 

  • Abdel-Dayem HM, Abu-Judeh H, Kumar M, Atay S, Naddaf S, El-Zeftawy H, Luo JQ (1998) SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clin Nucl Med 23:309–317

    CAS  PubMed  Google Scholar 

  • ACES Investigators (2009) The asymptomatic carotid emboli study: study design and baseline results. Int J Stroke 4:398–405

    Google Scholar 

  • Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP, DEFUSE Investigators (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517

    PubMed  Google Scholar 

  • Alexandrov AV, Ehrlich LE, Bladin CF, Norris JW (1996) Simple visual analysis of brain perfusion on HMPAO SPECT predicts early outcome in acute stroke. Stroke 27:1537–1542

    CAS  PubMed  Google Scholar 

  • Alexandrov AV, Masdeu JC, Devous MD Sr, Black SE, Grotta JC (1997) Brain single photon emission CT with HMPAO and safety of thrombolytic therapy in acute ischemic stroke. Stroke 28:1830–1834

    CAS  PubMed  Google Scholar 

  • Berrouschot J, Barthel H, Hesse S, Koster J, Knapp WH, Scheider D (1998) Differentiation between transient ischemic attack and ischemic stroke within the first six hours after onset of symptoms using 99mTc-ECD-SPECT. J Cereb Blood Flow Metab 18:921–929

    CAS  PubMed  Google Scholar 

  • Bhuiyan MR, Deb S, Mitchell RA, Teddy PJ, Drummond KJ (2012) The effect of formal training on the clinical utility of transcranial Doppler ultrasound monitoring in patients with aneurysmal subarachnoid haemorrhage. J Clin Neurosci 19:1255–1260

    PubMed  Google Scholar 

  • Buttler CRE, Costa DC, Walker Z, Katona CLE (1998) PET and SPECT imaging in the dementias. In: Murray IPC, E11 PJ (eds) Nuclear medicine in clinical diagnosis and treatment, 2nd edn. Churchill Livingston, Edinburgh, pp 713–728

    Google Scholar 

  • Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    CAS  PubMed  Google Scholar 

  • Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21:462–470

    CAS  PubMed  Google Scholar 

  • Cha S (2009) Neuroimaging in neuro-oncology. Neurotherapeutics 6:465–477

    CAS  PubMed  Google Scholar 

  • Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echoplanar perfusion MR imaging. Radiology 223:11–29

    PubMed  Google Scholar 

  • Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687

    CAS  PubMed  Google Scholar 

  • Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481

    PubMed  Google Scholar 

  • Cikrit DF, Dalsing MC, Harting PS, Burt RW, Lalka SG, Sawchuk AP, Solooki B (1997) Cerebral vascular reactivity assessed with acetazolamide single photon emission computer tomography scans before and after carotid endarterectomy. Am J Surg 174:193–197

    CAS  PubMed  Google Scholar 

  • Cikrit DF, Dalsing MC, Lalka SG, Burt RW, Sawchuk AP, Solooki BA (1999) The value of acetazolamide single photon emission computed tomography scans in the preoperative evaluation of asymptomatic critical carotid stenosis. J Vasc Surg 30:599–605

    CAS  PubMed  Google Scholar 

  • Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson G, Vespa P, American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43:1711–1737

    PubMed  Google Scholar 

  • Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, Powers WJ (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral hemodynamic impairment revisited. Brain 125:595–607

    PubMed  Google Scholar 

  • Enninful-Eghan H, Moore RH, Ichord R, Smith-Whitley K, Kwiatkowski JL (2010) Transcranial Doppler ultrasonography and prophylactic transfusion program is effective in preventing overt stroke in children with sickle cell disease. J Pediatr 157:479–484

    PubMed Central  PubMed  Google Scholar 

  • Essig M, Anzalone N, Combs SE et al (2012) MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. Am J Neuroradiol 33:803–817

    CAS  PubMed  Google Scholar 

  • Essig M, Lodemann KP, Le-Huu M, Brüning R, Kirchin M, Reith W (2006) Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 41:256–263

    CAS  PubMed  Google Scholar 

  • Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D, Anzalone N, Dorler A, Rovira A, Wintermark M, Law M (2013) Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol 200:24–34

    Google Scholar 

  • Ewing JR, Wei L, Knight R, Nagaraja TN, Fenstermacher JD (1999) A direct comparison between MRI arterial spin-tagging and quantitative autoradiography for measured cerebral blood flow in rats with experimental cerebral ischemia. In: Brain’99, 19th Annual Meeting, Copenhagen, p 595

    Google Scholar 

  • Faggioni L, Neri E, Bartolozzi C (2010) CT perfusion of head and neck tumors: how we do it. Am J Roentgenol 194:62–69

    Google Scholar 

  • Fox PT, Mintun MA, Rachle ME, Herscovitch P (1984) A noninvasive approach to quantitative functional brain mapping with H2 15O and positron emission tomography. J Cereb Blood Flow Metab 4:329–333

    CAS  PubMed  Google Scholar 

  • Frakowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736

    Google Scholar 

  • Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    PubMed  Google Scholar 

  • Grandin CB (2003) Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology 45:755–766

    CAS  PubMed  Google Scholar 

  • Grubb RL Jr, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, Spitznagel EL, Powers WJ (1998) Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. J Am Med Assoc 280:1055–1060

    Google Scholar 

  • Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Feibach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Sohngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomized, double-blind, placebo-controlled study. Lancet Neurol 8:141–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hadani M, Bruk B, Ram Z, Knoller N, Spiegelmann R, Segal E (1999) Application of transcranial Doppler ultrasonography for the diagnosis of brain death. Intensive Care Med 25:822–828

    CAS  PubMed  Google Scholar 

  • Hamilton WF, Moore JW, Kinsman JM, Spurling RG (1928) Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to cardiac output. Am J Physiol 84:338–344

    CAS  Google Scholar 

  • Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2 15O2. I. Theory and error analysis. J Nucl Med 24:782–789

    CAS  PubMed  Google Scholar 

  • Hopyan J, Ciarallo A, Dowlatschahi D et al (2010) Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology 255:142–153

    PubMed  Google Scholar 

  • Jackson A, Jayson GC, Li KL et al (2003) Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol 76:153–162

    CAS  PubMed  Google Scholar 

  • Jain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, Patel SC, Ewing J, Mikkelsen T (2008) Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. Am J Neuroradiol 20:694–700

    Google Scholar 

  • Jorgensen LG (1995) Transcranial Doppler ultrasound for cerebral perfusion. Acta Physiol Scan Suppl 625:1–44

    CAS  Google Scholar 

  • Josephson SA, Dillon WP, Smith WS (2005) Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging. Neurology 64:1805–1806

    PubMed  Google Scholar 

  • Kao CH, Chan JL, Changlai SP, Liao KK, Chieng PU (1999) The role of FDG-PET, HMPAO-SPECT and MRI in the detection of brain involvement in patients with systemic lupus erythematosus. Eur J Nucl Med 26:129–134

    CAS  PubMed  Google Scholar 

  • Kidwell CS, Jahan R, Alger JR, Schaewe TJ, Guzy J, Guzy J, Starkman S, Elashoff R, Gornbein J, Nenov V, Saver JL, MR RESCUE Investigators (2014) Design and rationale of the Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE) trial. Int J Stroke 9:110–116

    PubMed  Google Scholar 

  • Kimura H, Takeuchi H, Koshimoto Y, Arishima H, Uematsu H, Kawamura Y, Kubota T, Itoh H (2006) Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol 1:85–93

    Google Scholar 

  • Lassen NA, Andersen AR, Friberg L, Paulson OB (1988) The retention of 99mTc-d, l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab 8:S13–S27

    CAS  PubMed  Google Scholar 

  • Launes J, Siren J, Valanne L, Salonen O, Nikkinen P, Seppalainen AM, Liewendahl K (1997) Unilateral hyperperfusion in brain-perfusion SPECT predicts poor prognosis in acute encephalitis. Neurology 48:1347–1351

    CAS  PubMed  Google Scholar 

  • Lee YJ, Ahn KJ, Kim BS, Yoo WJ (2012) Role of perfusion CT in differentiating between various cerebral masses using normalized permeability surface area product and cerebral blood volume. Clin Imaging 36:680–687

    PubMed  Google Scholar 

  • Lupetin AR, Davis DA, Beckman I, Dash N (1995) Transcranial Doppler sonography. Part 1. Principles, technique, and normal appearances. Radiographics 15:179–191

    CAS  PubMed  Google Scholar 

  • Markus HS, King A, Shipley M, Topakian R, Cullinan M, Reihill S, Bornstein NM, Schaafasma A (2010) Asymptomatic embolization for prediction of stroke in the asymptomatic carotid emboli study (ACES): a prospective observational study. Lancet Neurol 9:663–671

    PubMed Central  PubMed  Google Scholar 

  • Masdeu JC, Abdel-Dayem H, Van Heertum RL (1995) Head trauma: use of SPECT. J Neuroimaging 5:S53–S57

    PubMed  Google Scholar 

  • Mettler FA, Guiberteau MJ (2006) Essentials of nuclear medicine imaging, 5th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Munari M, Zucchetta P, Carollo C, Gallo F, De Nardin M, Marzola MC, Ferretti S, Facco E (2005) Confirmatory tests in the diagnosis of brain death: comparison between SPECT and contrast angiography. Crit Care Med 33:2068–2073

    PubMed  Google Scholar 

  • Nariai T, Suzuki R, Hirakawa K, Maehara T, Ishii K, Senda M (1995) Vascular reserve in chronic cerebral ischemia measured by the acetazolamide challenge test: comparison with positron emission tomography. AJNR Am J Neuroradiol 16:563–570

    CAS  PubMed  Google Scholar 

  • Nariai T, Matsushima Y, Imae S, Tanaka Y, Ishii K, Senda M, Ohno K (2005) Severe hemodynamic stress in selected subtypes of patients with moya-moya disease: a positron emission tomography study. J Neurol Neurosurg Psychiatry 76:663–669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parks LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743

    Google Scholar 

  • Petersen ET, Mouridsen K, Golay X et al (2010) The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49:104–113

    PubMed Central  PubMed  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    CAS  PubMed  Google Scholar 

  • Pichler BJ, Kolb A, Nagele T, Schlemmer HP (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51:333–336

    PubMed  Google Scholar 

  • Raichle ME (1979) Quantitative in vivo autoradiography with positron emission tomography. Brain Res 180:47–68

    CAS  PubMed  Google Scholar 

  • Raichle ME, Martin WRW, Herscovitch P, Mintum MA, Markham J (1983) Brain blood flow measured with intravenous H2 15O2. II. Implementation and validation. J Nucl Med 24:790–798

    CAS  PubMed  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavia A, Som P, Sokoloff L (1979) The 18F fluorode-oxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    CAS  PubMed  Google Scholar 

  • Ringelstein EB, Droste DW, Babikian VL, Evans DH, Grosset DG, Kaps M, Markus HS, Russell D, Siebler M (1998) Consensus on microembolus detection by TCD. International Consensus Group on microembolus detection. Stroke 29:725–729

    CAS  PubMed  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    CAS  PubMed  Google Scholar 

  • Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Claussen CD (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    PubMed  Google Scholar 

  • Schreiber WG, Guckel F, Stritzke P, Schmiedek P, Schwartz A, Brix G (1998) Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 18:1143–1156

    CAS  PubMed  Google Scholar 

  • Speck O, Chang L, DeSilva NM, Ernst T (2000) Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 12:381–387

    CAS  PubMed  Google Scholar 

  • Spencer MP, Thomas GI, Nicholls SC, Sauvage LR (1990) Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke 21:415–423

    CAS  PubMed  Google Scholar 

  • St Lawrence KS, Frank JA, MacLaughlin AC (2000) Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation. Magn Reson Med 44:440–449

    CAS  PubMed  Google Scholar 

  • Stewart GN (1894) Researches on the circulation time in organs and on the influences which affect it. J Physiol 15:1–89

    Google Scholar 

  • Stewart GN (1897) Researches on the circulation time and on the influences which affect it, IV: the output of the heart. J Physiol 22:150–183

    Google Scholar 

  • Tan JC, Dillon WP, Liu S, Adler F, Smith WS, Wintermark M (2007) Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 61:533–543

    PubMed  Google Scholar 

  • Thomas DL, Lythgoe MR, Calamante F, Gadian DG, Ordidge RJ (2001) Simultaneous noninvasive measurement of CBF and CBV using double-echo FAIR (DEFAIR). Magn Reson Med 45:853–863

    CAS  PubMed  Google Scholar 

  • Thompson G, Mills SJ, Stivaros SM, Jackson A (2010) Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 20:337–353

    PubMed  Google Scholar 

  • Topakian R, King A, Kwon SU, Schaafsma A, Shipley M, Markus HS, Investigators ACES (2011) Ultrasonic plaque echolucency and emboli signals predict stroke in asymptomatic carotid stenosis. Neurology 77:751–758

    CAS  PubMed  Google Scholar 

  • Tsivgoulis G, Ribo M, Rubiera M, Vasdekis SN, Barlinn K, Athanasiadis D, Bavarsad Shahripour R, Giannopoulos S, Stamboulis E, Harrigan MR, Molina CA, Alexandrov AV (2013) Real-time validation of transcranial Doppler criteria in assessing recanalization during intra-arterial procedures for acute ischemic stroke: an international, multicenter study. Stroke 44:394–400

    PubMed  Google Scholar 

  • Ueda T, Sakaki S, Kumon Y, Ohta S (1999) Multivariable analysis of predictive factors related to outcome at 6 months after intra-arterial thrombolysis for acute ischemic stroke. Stroke 30:2360–2365

    CAS  PubMed  Google Scholar 

  • van Westen D, Petersen ET, Wirestam R et al (2011) Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours. MAGMA 24:211–223

    PubMed  Google Scholar 

  • von Kummer R, Albers GW, Mori E, DIAS Steering Committees (2012) The desmoteplase in acute ischemic stroke (DIAS) clinical trial program. Int J Stroke 7:589–596

    Google Scholar 

  • Wang J, Alsop DC, Li L et al (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48:242–254

    PubMed  Google Scholar 

  • Wang J, Alsop DC, Song HK et al (2003) Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 50:599–607

    PubMed  Google Scholar 

  • Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    PubMed  Google Scholar 

  • Warwick JM (2004) Imaging of brain function using SPECT. Metab Brain Dis 19:113–123

    PubMed  Google Scholar 

  • Weber MA, Gunther M, Lichy MP, Delorme S, Bongers A, Thilmann C, Essiq M, Zuna I, Schad LR, Debus J, Schlemmer HP (2003) Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 38:712–718

    PubMed  Google Scholar 

  • Wintermark M, Fischbein NJ, Smith WS, Ko NU, Quist M, Dillon WP (2005) Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 26:104–112

    PubMed  Google Scholar 

  • Wintermark M, Meuli R, Browaeys P, Reichhart M, Bogousslavsky J, Schnyder P et al (2007) Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology 68:694–697

    CAS  PubMed  Google Scholar 

  • Wintermark M, Sincic R, Sridhar D, Chien JD (2008) Cerebral perfusion CT: technique and clinical applications. J Neuroradiol 35:253–260

    CAS  PubMed  Google Scholar 

  • Wittsack HJ, Ritzl A, Fink GR, Wenserski F, Siebler M, Seitz RJ, Modder U, Freund HJ (2002) MR Imaging in acute stroke: diffusion-weighted and perfusion imaging parameters for predicting infarct size. Radiology 222:397–403

    PubMed  Google Scholar 

  • Wolf RL, Wang J, Wang S et al (2005) Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging 22:475–482

    PubMed  Google Scholar 

  • Wolf RL, Wang J, Detre JA, Zager EL, Hurst RW (2008) Arteriovenous shunt visualization in arteriovenous malformations with arterial spin-labeling MR imaging. Am J Neuroradiol 29:681–687

    CAS  PubMed  Google Scholar 

  • Wu WC, Jiang SF, Yang SC, Lien SH (2011) Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging: a normative study of reproducibility in the human brain. Neuroimage 56:1244–1250

    PubMed  Google Scholar 

  • Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn JD, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin AC (2000) H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450–456

    CAS  PubMed  Google Scholar 

  • Zhao L, Barlinn K, Sharma VK, Tsivgoulis G, Cava LF, Vasdekis SN, Teoh HL, Triantafyllou N, Chan BP, Sharma A, Voumvourakis K, Stamboulis E, Saggur M, Harrigan MR, Albright KC, Alexandrov AV (2011) Velocity criteria for intracranial stenosis revisited: an international multicenter study of transcranial Doppler and digital subtraction angiography. Stroke 42:3429–3434

    PubMed  Google Scholar 

Further Reading

  • Asenbaum S, Baumgartner C (2001) Nuclear medicine in the preoperative evaluation of epilepsy. Nucl Med Commun 22:835–840

    CAS  PubMed  Google Scholar 

  • Calamente F (2010) Perfusion MRI using dynamic-susceptibility contrast MRI: quantification issues in patient studies. Top Magn Reson Imaging 21(2):75–85

    Google Scholar 

  • Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 29(7):1228–1234

    CAS  PubMed  Google Scholar 

  • Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spine-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 29(7):1235–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deibler AR, Pollack JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labelling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol 29(8):1428–1435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC (1998) Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 50:633–664

    CAS  PubMed  Google Scholar 

  • Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC (1999) Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging 10:870–875

    CAS  PubMed  Google Scholar 

  • Ewing JR, Fenstermacher JD (1999) The single-coil arterial spin-tagging experiment for estimating cerebral blood flow as viewed from the capillary. What is the effective T1 of the experiment? In: ISMRM, 7th Annual Meeting, Philadelphia, p 1846

    Google Scholar 

  • Gonzalez RG (2013) Current state of acute stroke imaging. Stroke 44(11):3260–3264

    PubMed  Google Scholar 

  • Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29:759–766

    CAS  PubMed  Google Scholar 

  • Hirano T, Minematsu K, Hasegawa Y, Tanaka Y, Hayashida K, Yamaguchi Tv (1994) Acetazolamide reactivity on 123I-IMP single photon emission computed tomography in patients with major cerebral artery occlusive disease: correlation with positron emission tomography parameters. J Cereb Blood Flow Metab 14:763–770

    CAS  PubMed  Google Scholar 

  • Hoeffner EG, Case I, Jain R, Gujar SK, Shah GV, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukhergji SK (2004) Cerebral perfusion CT: technique and clinical applications. Radiology 231(3):632–644

    PubMed  Google Scholar 

  • Hunt CH, Hartman RP, Hesley GK (2009) Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. Am J Roentgenol 193:1124–1127

    Google Scholar 

  • Katayama H (1990) Adverse reactions to contrast media: what are the risk factors? Invest Radiol 25(1):16–17

    Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest 27(4):476–483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lacerda S, Law M (2009) Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am 19:527–557

    PubMed  Google Scholar 

  • Mitchell AM, Jones AE, Tumlin JA, Kline JA (2010) Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Soc Nephrol 5(1):4–9

    Google Scholar 

  • Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen RR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    PubMed  Google Scholar 

  • Petersen ET, Lim T, Golay X (2006) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55:219–232

    PubMed  Google Scholar 

  • Petersen ET, Zimine I, Ho YC (2006) Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701

    CAS  PubMed  Google Scholar 

  • Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48:150–159

    CAS  PubMed  Google Scholar 

  • Ryding E (1996) SPECT measurements of brain function in dementia: a review. Acta Neurol Scand Suppl 168:54–58

    CAS  PubMed  Google Scholar 

  • Schepers J, Veldhuis WB, Paul RJ, de Groot JW, van Osch MJ, Nicolay K, van der Sanden BP (2004) Comparison of FAIR perfusion kinetics with DSC-MRI and functional histology in a model of transient ischemia. Magn Reson Med 51:312–320

    PubMed  Google Scholar 

  • Schaefer PW, Roccatagliata L, Ledezma C, Hoh B, Schwamm LH, Koroshetz W, Gonzalez RG, Lev MH (2006) First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy. Am J Neuroradiol 27:20–25

    CAS  PubMed  Google Scholar 

  • Shiroishi MS, Habibi M, Rajderkar D et al (2011) Perfusion and permeability MR imaging of gliomas. Technol Cancer Res Treat 10:59–71

    CAS  PubMed  Google Scholar 

  • Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 43:559–564

    CAS  PubMed  Google Scholar 

  • Weckesser M, Schober O (1999) Brain death revisited: utility confirmed for nuclear medicine. Eur J Nucl Med 26:1387–1391

    CAS  PubMed  Google Scholar 

  • Wintermark M, Reichhart M, Cuisenaire O, Maeder P, Thiran JP, Schnyder P et al (2002) Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 33:2025–2031

    CAS  PubMed  Google Scholar 

  • Wintermark M, Reichhart M, Thiran JP, Maeder P, Chalaron M, Schnyder P et al (2002) Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51:417–432

    PubMed  Google Scholar 

  • Wintermark M, Chiolero R, van Melle G, Revelly JP, Porchet F, Regli L et al (2004) Relationship between brain perfusion computed tomography variables and cerebral perfusion pressure in severe head trauma patients. Crit Care Med 32:1579–1587

    PubMed  Google Scholar 

  • Wintermark M, van Melle G, Schnyder P, Revelly JP, Porchet F, Regli L et al (2004) Admission perfusion CT: prognostic value in patients with severe head trauma. Radiology 232:211–220

    PubMed  Google Scholar 

  • Wintermark M, Chiolero R, Van Melle G, Revelly JP, Porchet F, Regli L et al (2006) Cerebral vascular autoregulation assessed by perfusion-CT in severe head trauma patients. J Neuroradiol 33:27–37

    CAS  PubMed  Google Scholar 

  • Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D et al (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37:979–985

    PubMed  Google Scholar 

  • Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27:26–34

    CAS  PubMed  Google Scholar 

  • Wolf RL, Alsop DC, McGarvey ML, Maldjian JA, Wang J, Detre JA (2003) Susceptibility contrast and arterial spin label perfusion MRI in cerebrovascular disease. J Neuroimaging 13:17–27

    PubMed  Google Scholar 

  • Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144

    CAS  PubMed  Google Scholar 

  • Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC (1997) Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 37:226–237

    CAS  PubMed  Google Scholar 

  • Yonas H, Pindzola RR, Meltzer CC, Sasser H (1998) Qualitative versus quantitative assessment of cerebrovascular reserves. Neurosurgery 42:1005–1010, discussion 1011-1002

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Jeanne Beer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Beer, A.J., Wintermark, M. (2014). Perfusion Measurements: Brain. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics