Skip to main content

Effect on Generalization of Using Relational Information in List-Wise Algorithms

  • Conference paper
  • 3845 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7719))

Abstract

Learning to rank became a hot research topic in recent years and utilizing relational information in list-wise algorithms was discovered to be valuable and was widely adopted in various algorithms. These algorithms’ empirical performances were usually given, but few of them conduct theoretical analysis on the generalization bound. Based on the theory of Rademacher Average, we derive the generalization bound of ranking relational objects algorithms and discuss the effect on the generalization bound of using this method. Especially, an interesting property of ranking relational objects algorithms for Topic Distillation was discovered: the generalization bound does not depend on the size of documents in each query in training set. Experiments are conducted to verify this property.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lai, H., Pan, Y., Liu, C., Lin, L., Wu, J.: Sparse learning-to-rank via an efficient primal-dual algorithm. IEEE Transactions on Computers (2011)

    Google Scholar 

  2. Pan, Y., Luo, H., Qi, H., Tang, Y.: Transductive learning to rank using association rules. Expert Systems with Applications 38, 12839–12844 (2011)

    Article  Google Scholar 

  3. Rigutini, L., Papini, T., Maggini, M., Scarselli, F.: SortNet: Learning to Rank by a Neural Preference Function. IEEE Transactions on Neural Networks 22, 1368–1380 (2011)

    Article  Google Scholar 

  4. Chapelle, O., Chang, Y.: Yahoo! Learning to Rank Challenge Overview. Journal of Machine Learning Research 14, 1–24 (2011)

    Google Scholar 

  5. Lubell-Doughtie, P., Hofmann, K.: Learning to Rank from Relevance Feedback for e-Discovery. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 535–539. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Li, P., Burges, C., Wu, Q.: Mcrank: Learning to ank using multiple classification and gradient boosting. In: Advances in Neural Information Processing Systems, vol. 20, pp. 897–904 (2007)

    Google Scholar 

  7. Xu, J., Chen, C., Xu, G., Li, H., Abib, E.R.T.: Improving quality of training data for learning to rank using click-through data. In: Web Search and Data Mining, pp. 171–180 (2010)

    Google Scholar 

  8. Joachims, T.: Optimizing search engines using clickthrough data (2002)

    Google Scholar 

  9. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning (ICML), pp. 89–96. ACM Press (2005)

    Google Scholar 

  10. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for combining preferences. The Journal of Machine Learning Research 4, 933–969 (2003)

    MathSciNet  Google Scholar 

  11. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to rank: theory and algorithm. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1192–1199. ACM Press (2008)

    Google Scholar 

  12. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning (ICML), pp. 129–136. ACM Press (2007)

    Google Scholar 

  13. Qin, T., Zhang, X.D., Tsai, M.F., Wang, D.S., Liu, T.Y., Li, H.: Query-level loss functions for information retrieval. The Journal of Information Processing and Management 44(2), 838–855 (2007)

    Article  Google Scholar 

  14. Qin, T., Liu, T.Y., Li, H.: A general approximation framework for direct optimization of information retrieval measures. MSR-TR-2008-164, Microsoft Research (2008)

    Google Scholar 

  15. Shi, Y., Larson, M., Hanjalic, A.: List-wise learning to rank with matrix factorization for collaborative filtering. In: Conference on Recommender Systems, pp. 269–272 (2010)

    Google Scholar 

  16. Liu, T.Y., Lan, Y.: Generalization analysis of listwise learning-to-rank algorithms using rademacher average. Technical Report MSR-TR-2008-155, Microsoft Research (2008)

    Google Scholar 

  17. Lan, Y., Liu, T.Y., Ma, Z., Li, H.: Generalization analysis of listwise learning-to-rank algorithms. In: Proceedings of 26th International Conference on Machine Learning (2009)

    Google Scholar 

  18. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  19. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin, T., Liu, T.Y., Zhang, X.D., Wang, D.S., Xiong, W.Y., Li, H.: Learning to rank relational objects and its application to web search. In: Proceeding of the 17th International Conference on World Wide Web, pp. 407–416. ACM, New York (2008)

    Chapter  Google Scholar 

  21. Jin, R., Valizadegan, H., Li, H.: Ranking refinement and its application to information retrieval. In: Proceeding of the 17th International Conference on World Wide Web, pp. 397–406 (2008)

    Google Scholar 

  22. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B., Olkopf, B.S.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, vol. 16, pp. 321–328. MIT Press (2003)

    Google Scholar 

  23. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: ICML 2005: Proceedings of the 22nd International Conference on Machine Learning, pp. 1036–1043. ACM, New York (2005)

    Google Scholar 

  24. Zhou, D., Schölkopf, B., Hofmann, T.: Semi-supervised learning on directed graphs. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 1633–1640. MIT Press, Cambridge (2005)

    Google Scholar 

  25. Deng, H., Lyu, M.R., King, I.: Effective latent space graph-based re-ranking model with global consistency. In: WSDM 2009: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 212–221. ACM, New York (2009)

    Chapter  Google Scholar 

  26. Vapnik, V.N., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities 16, 264–280 (1971)

    Google Scholar 

  27. Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization bounds for the area under the roc curve. Journal of Machine Learning Research, 393–425 (2005)

    Google Scholar 

  28. Agarwal, S., Niyogi, P.: Stability and Generalization of Bipartite Ranking Algorithms. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 32–47. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Lan, Y., Liu, T.Y., Qin, T., Ma, Z., Li, H.: Query-level stability and generalization in learning to rank. In: Proceedings of 25th International Conference on Machine Learning, pp. 512–519 (2008)

    Google Scholar 

  30. Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 463–482 (2002)

    Google Scholar 

  31. Chapelle, O.: Training a Support Vector Machine in the Primal. Neural Computation 19, 1155–1178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, G., Tang, Y., Tang, F., Ding, S., He, C. (2013). Effect on Generalization of Using Relational Information in List-Wise Algorithms. In: Zu, Q., Hu, B., Elçi, A. (eds) Pervasive Computing and the Networked World. ICPCA/SWS 2012. Lecture Notes in Computer Science, vol 7719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37015-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37015-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37014-4

  • Online ISBN: 978-3-642-37015-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics