Skip to main content

Atmospheric Effects on Earth Rotation

  • Chapter
  • First Online:
Book cover Atmospheric Effects in Space Geodesy

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

One of the pivotal sources for fluctuations in all three components of the Earth’s rotation vector is the set of dynamical processes in the atmosphere, perceptible as motion and mass redistribution effects on a multitude of temporal and spatial scales. This review outlines the underlying theoretical framework for studying the impact of such geophysical excitation mechanisms on nutation, polar motion, and changes in length of day. It primarily addresses the so-called angular momentum approach with regard to its physical meaning and the application of data from numerical weather models. Emphasis is placed on the different transfer functions that are required for the frequency-dependent intercomparison of Earth rotation values from space geodetic techniques and the excitations from the output of atmospheric circulation models. The geophysical discussion of the review assesses the deficiencies of present excitation formalisms and acknowledges the oceans as other important driving agents for observed Earth rotation variations. A comparison of the angular momentum approach for the atmosphere to an alternative but equivalent modeling method involving Earth-atmosphere interaction torques is provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Z. Altamimi, P. Sillard, and C. Boucher. The impact of a no-net-rotation condition on ITRF2000. Geophys. Res. Lett., 30(2):1064, doi:10.1029/2002GL016279, 2003.

  • R. Barnes, R. Hide, A. White, and C. Wilson. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. Lond., A 387:31–73, 1983.

    Google Scholar 

  • C. Bizouard. Excitation of the polar motion and rotation rate. IERS EOP Product Center, Observatoire de Paris. http://hpiers.obspm.fr/eop-pc/, as at June 2011

  • C. Bizouard, A. Brzeziński, and S. Petrov. Diurnal atmospheric forcing and temporal variations of the nutation amplitudes. J. Geod., 72:561–577, 1998.

    Google Scholar 

  • A. Brzeziński. Polar motion excitation by variations of the effective angular momentum function: considerations concerning the deconvolution problem. Manuscr. Geodaet., 17:3–20, 1992.

    Google Scholar 

  • A. Brzeziński. Polar motion excitation by variations of the effective angular momentum function, II: extended-model. Manuscr. Geodaet., 19:157–171, 1994.

    Google Scholar 

  • A. Brzeziński and N. Capitaine. The use of the precise observations of the celestial ephemeris pole in the analysis of geophysical excitation of Earth rotation. J. Geophys. Res., 98(B4):6667–6675, 1993.

    Google Scholar 

  • A. Brzeziński, C. Bizouard, and S.D. Petrov. Influence of the atmosphere on Earth rotation: What new can be learned from the recent atmospheric angular momentum estimates? Surv. Geophys., 23:33–69, doi:10.1023/A:1014847319391, 2002.

    Google Scholar 

  • A. Brzeziński, H. Dobslaw, and R. Dill. Geophysical excitation of the Chandler wobble revisited. In Kenyon S.C., Pacino M.C., Marti U.J., editor, Geodesy for Planet Earth, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentinia, 31 August - 4 September 2009, pages 499–505. Springer, 2012.

    Google Scholar 

  • B.F. Chao. On the excitation of the Earth’s free wobble and reference frames. Geophys. J. R. Astron. Soc., 79:555–563, 1984.

    Google Scholar 

  • B.F. Chao. On the excitation of the Earth’s polar motion. Geophys. Res. Lett., 12(8):526–529, 1985.

    Google Scholar 

  • B.F. Chao. Length-of-day variations caused by El Nino-Southern Oscillation and quasi-biennial oscillation. Science, 243:923–925, 1989.

    Google Scholar 

  • B.F. Chao, R. Ray, J. Gipson, G. Egbert, and C. Ma. Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum. J. Geophys. Res., 101(B9) (B9):20151–20163, doi:10.1029/96JB01649, 1996.

    Google Scholar 

  • J.L. Chen and C.R. Wilson. Hydrological excitations of polar motion, 1993–2002. Geophys. J. Int., 160:833–839, doi:10.1111/j.1365-246X.2005.02522.x, 2005.

  • J.L. Chen, C.R. Wilson, B.F. Chao, C.K. Shum, and B.D. Tapley. Hydrological and oceanic excitations to polar motion and length-of-day variations. Geophys. J. Int., 141:149–156, doi:10.1046/j.1365-246X.2000.00069.x, 2000.

    Google Scholar 

  • F.A. Dahlen. The passive influence of the oceans upon the rotation of the Earth. Geophys. J. R. Astron. Soc., 46:363–406, 1976.

    Google Scholar 

  • O. de Viron and V. Dehant. Earth’s rotation and high frequency equatorial angular momentum budget of the atmosphere. Surv. Geophys., 20:441–462, doi:10.1023/A:1006723924421, 1999.

  • O. de Viron and V. Dehant. Tests on the validity of atmospheric torques on Earth computed from atmospheric model outputs. J. Geophys. Res., 108(B2):2068, doi:10.1029/2001JB001196, 2003.

  • O. de Viron, C. Bizouard, D. Salstein, and V. Dehant. Atmospheric torque on the Earth and comparison with atmospheric angular momentum variations. J. Geophys. Res., 104(B3):4861–4875, doi:10.1029/1998JB900063, 1999.

    Google Scholar 

  • O. de Viron, R.M. Ponte, and V. Dehant. Indirect effect of the atmosphere through the oceans on the Earth nutation using the torque approach. J. Geophys. Res., 106(B5):8841–8851, doi:10.1029/2000JB900387, 2001a.

  • O. de Viron, S.L. Marcus, and J. Dickey. Diurnal angular momentum budget of the atmosphere and its consequences for Earth’s nutation. J. Geophys. Res., 106(B11):26747–26759, doi:10.1029/2000JB000098, 2001b.

  • O. de Viron, L. Koot, and V. Dehant. Polar motion models: the torque approach. In Plag H.P., Chao B.F., Gross R.S., van Dam T., editor, Forcing of Polar Motion in the Chandler Frequency Band: A Contribution to Understanding Interannual Climate Change, volume 24. Cahiers du Centre Européen de Géodynamique et du Séismologie, Luxembourg, 2005.

    Google Scholar 

  • V. Dehant and O. de Viron. Earth rotation as an interdisciplinary topic shared by astronomers, geodesists and geophysicists. Adv. Space Res., 30(2):163–173, doi:10.1016/S0273-1177(02)00281-8, 2002.

  • V. Dehant, C. Bizouard, J. Hinderer, H. Legros, and M. Greff-Lefftz. On atmospheric pressure perturbations on precession and nutations. Phys. Earth Planet. Interiors, 96:25–39, doi:10.1016/0031-9201(95)03112-X, 1996.

    Google Scholar 

  • V. Dehant, F. Arias, C. Bizouard, P. Bretagnon, A. Brzeziński, B. Buffett, N. Capitaine, P. Defraigne, O. de Viron, M. Feissel, H. Fliegel, A. Forte, D. Gambis, J. Getino, R. Gross, T. Herring, H. Kinoshita, S. Klioner, P.M. Mathews, D. McCarthy, X. Moisson, S. Petrov, R.M. Ponte, F. Roosbeek, D. Salstein, H. Schuh, K. Seidelmann, M. Soffel, J. Souchay, J. Vondrák, J.M. Wahr, P. Wallace, R. Weber, J. Williams, Y. Yatskiv, V. Zharov, and S.Y. Zhu. Considerations concerning the non-rigid Earth nutation theory. Cel. Mech. Dyn. Astron., 72:245–310, 1999.

    Google Scholar 

  • J.O. Dickey, S.L. Marcus, and O. de Viron. Closure in the Earth’s angular momentum budget observed from subseasonal periods down to four days: No core effects needed. Geophys. Res. Lett., 37:L03307, doi:10.1029/2009GL041118, 2010.

  • S.R. Dickman. Evaluation of ’effective angular momentum functions’ formulations with respect to core-mantle coupling. J. Geophys. Res., 108(B3):2150, doi:10.1029/2001JB001603, 2003.

    Google Scholar 

  • S.R. Dickman. Rotationally consistent Love numbers. Geophys. J. Int., 161:31–40, doi:10.1111/j.1365-246X.2005.02574.x, 2005.

    Google Scholar 

  • H. Dobslaw, R. Dill, A. Grötzsch, A. Brzeziński, and M. Thomas. Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J. Geophys. Res., 115:B10406, doi:10.1029/2009JB007127, 2010.

  • T.M. Eubanks. Variations of the orientation of the Earth. In Smith D.E., Turcotte, D.L., editor, Contributions of Space Geodesy to Geodynamics: Earth Dynamics, volume 24, pages 1–54. AGU, Washington, 1993.

    Google Scholar 

  • S.B. Feldstein. The dynamics of atmospherically driven intraseasonal polar motion. J. Atm. Sci., 65(7):2290–2307, doi:10.1175/2007JAS2640.1, 2008.

    Google Scholar 

  • M. Fujita, B.F. Chao, B.V. Sanchez, and T.J. Johnson. Oceanic torques on solid Earth and their effects on Earth rotation. J. Geophys. Res., 107(B8):2154, doi:10.1029/2001JB000339, 2002.

    Google Scholar 

  • R.S. Gross. Correspondence between theory and observations of polar motion. Geophys. J. Int., 109(1):162–170, doi:10.1111/j.1365-246X.1992.tb00086.x, 1992.

    Google Scholar 

  • R.S. Gross. The effect of ocean tides on the Earth’s rotation as predicted by the results of an ocean tide model. Geophys. Res. Lett., 20(4):293–296, 1993.

    Google Scholar 

  • R.S. Gross. The excitation of the Chandler wobble. Geophys. Res. Lett., 27(15):2329–2332, doi:10.1029/2000GL011450, 2000.

    Google Scholar 

  • R.S. Gross. Earth rotation variations - long period. In Herring T.A., editor, Treatise on Geophysics, volume 3, Geodesy, pages 239–294. Elsevier, 2007.

    Google Scholar 

  • R.S. Gross, H.K. Hamdan, and D.H. Boggs. Evidence for excitation of polar motion by fortnightly ocean tides. Geophys. Res. Lett., 23(14):1809–1812, doi:10.1029/96GL01596, 1996.

    Google Scholar 

  • R.S. Gross, I. Fukumori, and D. Menemenlis. Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res., 108(B8):2370, doi: P10.1029/2002JB002143, 2003.

    Google Scholar 

  • R.S. Gross, I. Fukumori, D. Menemenlis, and P. Gegout. Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. J. Geophys. Res., 109(B01406), 2004.

    Google Scholar 

  • T.A. Herring, C.R. Gwinn, and I.I. Shapiro. Geodesy by radio interferometry: Studies of the forced nutations of the Earth: 1. Data Analysis. J. Geophys. Res., 91(B5):4745–4754, doi:10.1029/JB091iB05p04745, 1986.

    Google Scholar 

  • J.R. Holton and R.S. Lindzen. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atm. Sci., 29 (6):1076–1080, 1972.

    Google Scholar 

  • IAU Resolutions, 2000. http://www.iau.org/static/resolutions/IAU2000_French.pdf

  • IAU Resolutions, 2006. http://www.iau.org/static/resolutions/IAU2006_French.pdf

  • H. Iskenderian and D.A. Salstein. Regional sources of mountain torque variability and high-frequency fluctuations in atmospheric angular momentum. Mon. Wea. Rev., 126:1681–1694, 1998.

    Google Scholar 

  • H. Jeffreys. Causes contributory to the annual variation of latitude. Mon. Not. R. Astron. Soc., 76:499–525, 1916.

    Google Scholar 

  • L. Koot and O. de Viron. Atmospheric contributions to nutations and implications for the estimation of deep Earth’s properties from nutation observations. Geophys. J. Int., 185:1255–1265, doi:10.1111/j.1365-246X.2011.05026.x, 2011.

    Google Scholar 

  • K. Lambeck. The Earth’s Variable Rotation, Geophysical Causes and Consequences. Cambridge University Press, 1980.

    Google Scholar 

  • R. Madden and P. Julian. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28:702–708, 1971.

    Google Scholar 

  • P.M. Mathews, T.A. Herring, and B.A. Buffett. Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res., 104(B4):2068, doi:10.1029/2001JB000390, 2002.

  • D.D. McCarthy and B. Luzum. IERS Conventions 2010. IERS Technical Note, (36):179 pp., 2010.

    Google Scholar 

  • P. McClure. Diurnal polar motion. GSFC document X-592-73-259, Goddard Space Flight Center, Greenbelt, Maryland, 1973.

    Google Scholar 

  • P.J. Mendes Cerveira, J. Böhm, H. Schuh, T. Klügel, A. Velikoseltsev, U. Schreiber, and A. Brzeziński. Earth rotation observed by Very Long Baseline Interferometry and ring laser. Pure Appl. Geophys., 166(8–9):1499–1517, doi:10.1007/s00024-004-0487-z, 2009.

    Google Scholar 

  • J.B. Merriam. Zonal tides and changes in the length of day. Geophys. J. R. Astron. Soci., 62:551–561, 1980.

    Google Scholar 

  • H. Moritz and I.I. Müller. Earth Rotation: Theory and Observation. Ungar, New York, 1987.

    Google Scholar 

  • L.V. Morrison and F.R. Stephenson. Historical eclipses and the variability of the Earth’s rotation. J. Geodyn., 32(1–2):247–265, doi:10.1016/S0264-3707(01)00024-2, 2001.

    Google Scholar 

  • W.H. Munk and G.J.F. MacDonald. The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, New York, 1960.

    Google Scholar 

  • J. Nastula and D. Salstein. Regional atmospheric angular momentum contributions to polar motion excitation. J. Geophys. Res., 104(B4):7347–7358, doi:10.1029/1998JB900077, 1999.

    Google Scholar 

  • S.G. Philander. El Niño, La Niña, and the Southern Oscillation. Academic Press, San Diego, 1990.

    Google Scholar 

  • R.M. Ponte. Oceanic excitation of daily to seasonal signals in Earth rotation: results from a constant-density numerical model. Geophys. J. Int., 130(2):469–474, doi:10.1111/j.1365-246X.1997.tb05662.x, 1997.

  • R.D. Ray, D.J. Steinberg, B.F. Chao, and D.E. Cartwright. Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides. Science, 264(5160):830–832, doi:10.1126/science.264.5160.830, 1994.

    Google Scholar 

  • D.A. Salstein. Angular momentum of the atmosphere. In J. Holton, J. Pyle, J. Curry, editor, Encyclopedia of Atmospheric Sciences, pages 128–134. Elsevier, 2002.

    Google Scholar 

  • D.A. Salstein and R.D. Rosen. Topographic forcing of the atmosphere and a rapid change in the length of day. Science, 264:407–409, 1994.

    Google Scholar 

  • T. Sasao and J.M. Wahr. An excitation mechanism for the free ’core nutation’. Geophys. J. R. Astron. Soc., 64:729–746, 1981.

    Google Scholar 

  • M. Schindelegger, J. Böhm, D. Salstein, and H. Schuh. High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08. J. Geod., 8(7):425–433, doi:10.1007/s00190-011-0458-y, 2011.

    Google Scholar 

  • H. Schuh and S. Böhm. Earth rotation. In H.K. Gupta, editor, Encyclopedia of Solid Earth Geophysics, pages 123–129. Springer, 2011.

    Google Scholar 

  • H. Schuh, S. Nagel, and T. Seitz. Linear drift and periodic variations observed in long time series of polar motion. J. Geod., 74(10):701–710, doi:10.1007/s001900000133, 2001.

  • F. Seitz. Atmosphärische und ozeanische Einflüsse auf die Rotation der Erde - Numerische Untersuchungen mit einem dynamischen Erdsystemmodell. C578, Deutsche Geodätische Kommission, München (in German), 2004.

    Google Scholar 

  • F. Seitz and H. Schuh. Earth rotation. In G. Xu, editor, Science of Geodesy I: Advances and Future Directions, pages 185–227. Springer, 2010.

    Google Scholar 

  • M.L. Smith and F.A. Dahlen. The period and Q of the Chandler wobble. Geophys. J. R. Astron. Soc., 64:223–281, 1981.

    Google Scholar 

  • R.O. Vicente and C.R. Wilson. On the variability of the Chandler frequency. J. Geophys. Res., 102(B9):20439–20445, doi:10.1029/97JB01275, 1997.

    Google Scholar 

  • J. Vondrák and C. Ron. Quasi-diurnal atmospheric and oceanic excitation of nutation. Acta Geodyn. Geomater., 4(4):121–128, 2007.

    Google Scholar 

  • J. Vondrák and C. Ron. Study of atmospheric and oceanic excitations in the motion of Earth’s spin axis in space. Acta Geodyn. Geomater., 7(1):19–28, 2010.

    Google Scholar 

  • J.M. Wahr. The effects of the atmosphere and oceans on the Earth’s wobble - I. Theory. Geophys. J. R. Astron. Soc., 70:349–372, 1982.

    Google Scholar 

  • J.M. Wahr. The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day - II. Results. Geophys. J. R. Astron. Soc., 74:451–487, 1983.

    Google Scholar 

  • J.M. Wahr. Polar motion models: Angular momentum approach. In Plag H.P., Chao B.F., Gross R.S., van Dam T., editor, it Forcing of Polar Motion in the Chandler Frequency Band: A Contribution to Understanding Interannual Climate Change, volume 24. Cahiers du Centre Européen de Géodynamique et du Séismologie, Luxembourg, 2005.

    Google Scholar 

  • J.M. Wahr and A.H. Oort. Friction- and mountain-torque estimates from global atmospheric data. J. Atm. Sci., 41(2):190–204, 1984.

    Google Scholar 

  • J.M. Wahr, T. Sasao, and M.L. Smith. Effect of the fluid core on changes in the length of day due to long period tides. Geophys. J. R. Astron. Soc., 64:635–650, 1981.

    Google Scholar 

  • W.L. Wolf and R.B. Smith. Length-of-day changes and mountain torques during El Nino. J. Atm. Sci., 44(24):3656–3660, 1987.

    Google Scholar 

  • C. Wunsch and D. Stammer. Atmospheric loading and the oceanic ’inverted barometer’ effect. Rev. Geophys., 35(1):79–107, doi:10.1029/96RG03037, 1997.

    Google Scholar 

  • Y.H. Zhou, D.A. Salstein, and J.L. Chen. Revised atmospheric excitation function series related to Earth’s variable rotation under consideration of surface topography. J. Geophys. Res., 111(D12108): doi:10.1029/2005JD006608, 2006.

  • W. Zürn. The Nearly-Diurnal Free Wobble-resonance. In Wilhelm H., Zürn W., Wenzel H., editor, Tidal Phenomena, pages 95–107. Springer, 1997.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. A. Brzeziński for his excellent review, which helped to improve this part of the book significantly and strengthened the major geophysical discussion of each section. Innumerable comments on the style and writing were provided by D. Salstein and are highly appreciated. The first author is particularly indebted to the Austrian Science Fund (FWF) for supporting his work within project P20902-N10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schindelegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schindelegger, M., Böhm, S., Böhm, J., Schuh, H. (2013). Atmospheric Effects on Earth Rotation. In: Böhm, J., Schuh, H. (eds) Atmospheric Effects in Space Geodesy. Springer Atmospheric Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36932-2_6

Download citation

Publish with us

Policies and ethics