Skip to main content

Bioartifizielle Nervenimplantate und alternative Rekonstruktionsverfahren

  • Chapter
  • First Online:
Book cover Nervenchirurgie

Zusammenfassung

Die Rekonstruktion durchtrennter peripherer Nerven stellt immer dann eine besondere Herausforderung dar, wenn eine spannungsfreie Koaptation der Nervenstümpfe nicht möglich ist. Nervendefekte von wenigen Millimetern Länge können in der Regel in End-zu-End-Nahttechnik koaptiert werden. Bei Nervendefekten mit überkritischer Länge führt die direkte Nervenkoaptation aufgrund der Spannung bzw. Zugkraft zu einer reaktiven Fibrose, die das Aussprossen regenerierender Axone behindert (Deumens et al. 2010). Deshalb bleibt die Rekonstruktion langstreckiger peripherer Nervenverletzungen eine große chirurgische Herausforderung. Ziel dabei ist es, regenerierende Nervenfasern mittels Leitstrukturen zu ihren ursprünglichen Zielgeweben zu „dirigieren“.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Agnew SP, Dumanian GA (2010) Technical use of synthetic conduits for nerve repair. J Hand Surg Am 35 (5): 838–841

    Article  PubMed  Google Scholar 

  • Angius D, Wang H, Spinner RJ, Gutierrez-Cotto Y, Yaszemski MJ, Windebank AJ (2012) A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials 33: 8034–8039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Archibald SJ, Krarup C, Shefner J, Li ST, Madison RD (1991) A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol 306 (4): 685–696

    Article  CAS  PubMed  Google Scholar 

  • Ashley WW, Jr., Weatherly T, Park TS (2006) Collagen nerve guides for surgical repair of brachial plexus birth injury. J Neurosurg 105 (6 Suppl): 452–456

    PubMed  Google Scholar 

  • Battiston B, Geuna S, Ferrero M, Tos P (2005) Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 25 (4): 258–267

    Article  PubMed  Google Scholar 

  • Battiston B, Raimondo S, Tos P, Gaidano V, Audisio C, Scevola A, Perroteau I, Geuna S (2009) Chapter 11: Tissue engineering of peripheral nerves. Int Rev Neurobiol 87: 227–249

    Article  CAS  PubMed  Google Scholar 

  • Bell JH, Haycock JW (2012) Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. Tissue Eng Part B Rev 18: 116–128

    Article  CAS  PubMed  Google Scholar 

  • Bertleff MJ, Meek MF, Nicolai JP (2005) A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand. J Hand Surg Am 30 (3): 513–518

    Article  PubMed  Google Scholar 

  • Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, Woeltje M, Tank J, Beckmann C, Fuchs P, Damink LO, Schugner F, Heschel I, Pallua N (2007) In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng 13 (12): 2971–2979

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schugner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA, Pallua N (2009) In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials 30 (2): 169–179

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt A, Lassner F, O’Dey D, Deumens R, Bocker A, Schwendt T, Janzen C, Suschek CV, Tolba R, Kobayashi E, Sellhaus B, Tholl S, Eummelen L, Schugner F, Damink LO, Weis J, Brook GA, Pallua N (2012) The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials 33 (5): 1363–1375

    Article  CAS  PubMed  Google Scholar 

  • Brooks DN, Weber RV, Chao JD, Rinker BD, Zoldos J, Robichaux MR, Ruggeri SB, Anderson KA, Bonatz EE, Wisotsky SM, Cho MS, Wilson C, Cooper EO, Ingari JV, Safa B, Parrett BM, Buncke GM (2012) Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 32 (1): 1–14

    Article  PubMed  Google Scholar 

  • Bushnell BD, McWilliams AD, Whitener GB, Messer TM (2008) Early clinical experience with collagen nerve tubes in digital nerve repair. J Hand Surg Am 33 (7): 1081–1087

    Article  PubMed  Google Scholar 

  • Chalfoun CT, Wirth GA, Evans GR (2006) Tissue engineered nerve constructs: where do we stand? J Cell Mol Med 10: 309–317

    Article  CAS  PubMed  Google Scholar 

  • Chiriac S, Facca S, Diaconu M, Gouzou S, Liverneaux P (2012) Experience of using the bioresorbable copolyester poly (DL-lactide-epsilon-caprolactone) nerve conduit guide Neurolac for nerve repair in peripheral nerve defects: report on a series of 28 lesions. J Hand Surg Eur 37 (4): 342–349

    Article  CAS  Google Scholar 

  • Cho MS, Rinker BD, Weber RV, Chao JD, Ingari JV, Brooks D, Buncke GM (2012) Functional outcome following nerve repair in the upper extremity using processed nerve allograft. J Hand Surg Am 37 (11): 2340–2349

    Article  PubMed  Google Scholar 

  • Daly W, Yao L, Zeugolis D, Windebank A, Pandit A (2012) A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 9: 202–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dellon AL, Maloney CT, Jr. (2006) Salvage of sensation in a hallux-to-thumb transfer by nerve tube reconstruction. J Hand Surg Am 31 (9): 1495–1498

    Article  PubMed  Google Scholar 

  • de Medinaceli L, Rawlings RR (1987) Is it possible to predict the outcome of peripheral nerve injuries? A probability model based on prospects for regenerating neurites. Biosystems 20: 243–258

    Article  CAS  PubMed  Google Scholar 

  • Deumens R, Bozkurt A, Meek MF, Marcus MA, Joosten EA, Weis J, Brook GA (2010) Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol 92: 245–276

    Article  PubMed  Google Scholar 

  • Donoghoe N, Rosson GD, Dellon AL (2007) Reconstruction of the human median nerve in the forearm with the Neurotube. Microsurgery 27 (7): 595–600

    Article  PubMed  Google Scholar 

  • Doolabh VB, Hertl MC, Mackinnon SE (1996) The role of conduits in nerve repair: a review. Rev Neurosci 7: 47–84

    CAS  PubMed  Google Scholar 

  • Ducic I, Maloney CT, Jr., Dellon AL (2005) Reconstruction of the spinal accessory nerve with autograft or neurotube? Two case reports. J Reconstr Microsurg 21 (1): 29–33; discussion 34

    Google Scholar 

  • Fox IK, Mackinnon SE (2011) Adult peripheral nerve disorders: nerve entrapment, repair, transfer, and brachial plexus disorders. Plast Reconstr Surg 127 (5): 105e–118e

    Google Scholar 

  • Grothe C, Haastert-Talini K, Freier T, Navarro X, Dahlin LB, Salgado A, Rochkind S, Shahar A, Pinto LF, Hildebrandt M, Geuna S (2012) BIOHYBRID – Biohybrid templates for peripheral nerve regeneration. J Peripher Nerv Syst 17: 220–222

    Article  PubMed  Google Scholar 

  • Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93: 204–230

    Article  CAS  PubMed  Google Scholar 

  • Haastert-Talini K (2012) Culture and proliferation of highly purified adult Schwann cells from rat, dog, and man. Methods Mol Biol 846: 189–200

    Article  PubMed  Google Scholar 

  • Haastert-Talini K, Geuna S, Dahlin LB, Meyer C, Stenberg L, Freier T, Heimann C, Barwig C, Pinto LF, Raimondo S, Gambarotta G, Samy SR, Sousa N, Salgado AJ, Ratzka A, Wrobel S, Grothe C (2013) Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials [Epub ahead of print] doi:pii: S0142-9612(13)01052-1

    Google Scholar 

  • Haastert-Talini K, Schaper-Rinkel J, Schmitte R, Bastian R, Mühlenhoff M, Schwarzer D, Draeger G, Su Y, Scheper T, Gerardy-Schahn R, Grothe C (2010) In vivo evaluation of polysialic acid as part of tissue-engineered nerve transplants. Tissue Eng Part A 16 (10): 3085–98

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Cortes P, Garrido J, Camara M, Ravassa FO (2010) Failed digital nerve reconstruction by foreign body reaction to Neurolac nerve conduit. Microsurgery 30 (5): 414–416

    PubMed  Google Scholar 

  • Huelsenbeck SC, Rohrbeck A, Handreck A, Hellmich G, Kiaei E, Roettinger I, Grothe C, Just I, Haastert-Talini K (2012) C3 peptide promotes axonal regeneration and functional motor recovery after peripheral nerve injury. Neurotherapeutics 9 (1): 185–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hung V, Dellon AL (2008) Reconstruction of a 4-cm human median nerve gap by including an autogenous nerve slice in a bioabsorbable nerve conduit: case report. J Hand Surg Am 33 (3): 313–315

    Article  PubMed  Google Scholar 

  • Karabekmez FE, Duymaz A, Moran SL (2009) Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand (NY) 4 (3): 245–249

    Article  Google Scholar 

  • Kim J, Dellon AL (2001) Reconstruction of a painful post-traumatic medial plantar neuroma with a bioabsorbable nerve conduit: a case report. J Foot Ankle Surg 40 (5): 318–323

    Article  CAS  PubMed  Google Scholar 

  • Li ST, Archibald SJ, Krarup C, Madison RD (1992) Peripheral nerve repair with collagen conduits. Clin Mater 9 (3–4): 195–200

    Article  CAS  PubMed  Google Scholar 

  • Lohmeyer J, Zimmermann S, Sommer B, Machens HG, Lange T, Mailander P (2007) Bridging peripheral nerve defects by means of nerve conduits. Chirurg 78 (2): 142–147

    Article  CAS  PubMed  Google Scholar 

  • Lohmeyer JA, Siemers F, Machens HG, Mailander P (2009) The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J Reconstr Microsurg 25 (1): 55–61

    Article  PubMed  Google Scholar 

  • Lundborg G (2004) Alternatives to autologous nerve grafts. Handchir Mikrochir Plast Chir 36: 1–7

    Article  CAS  PubMed  Google Scholar 

  • Lundborg G, Rosen B (2003) Nerve injury and repair - a challenge to the plastic brain. J Peripher Nerv Syst 8: 209–226

    Article  PubMed  Google Scholar 

  • Lundborg G, Rosen B, Dahlin L, Holmberg J, Rosen I (2004) Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br 29 (2): 100–107

    Article  CAS  PubMed  Google Scholar 

  • Mackinnon SE, Dellon AL, Hudson AR, Hunter DA (1985) A primate model for chronic nerve compression. J Reconstr Microsurg 1 (3): 185–195

    Article  CAS  PubMed  Google Scholar 

  • Mackinnon SE, Hudson AR (1992) Clinical application of peripheral nerve transplantation. Plast Reconstr Surg 90: 695–699

    Article  CAS  PubMed  Google Scholar 

  • Mason MR, Tannemaat MR, Malessy MJ, Verhaagen J (2011) Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve? Curr Gene Ther 11: 75–89

    Article  CAS  PubMed  Google Scholar 

  • Meek MF, Nicolai JP, Robinson PH (2006) Secondary digital nerve repair in the foot with resorbable p (DLLA-epsilon-CL) nerve conduits. J Reconstr Microsurg 22 (3): 149–151

    Article  PubMed  Google Scholar 

  • Millesi H (2007) Bridging defects: autologous nerve grafts. Acta Neurochir Suppl 100: 37–38

    Article  CAS  PubMed  Google Scholar 

  • Moore AM, Kasukurthi R, Magill CK, Farhadi HF, Borschel GH, Mackinnon SE (2009) Limitations of conduits in peripheral nerve repairs. Hand (NY) 4 (2): 180–186

    Article  Google Scholar 

  • Moradzadeh A, Borschel GH, Luciano JP, Whitlock EL, Hayashi A, Hunter DA, Mackinnon SE (2008) The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol 212: 370–376

    Article  PubMed Central  PubMed  Google Scholar 

  • Navissano M, Malan F, Carnino R, Battiston B (2005) Neurotube for facial nerve repair. Microsurg 25 (4): 268–71

    Article  Google Scholar 

  • Rajaram A, Chen XB, Schreyer DJ (2012) Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration. Tissue Eng Part B Rev 18: 454–467

    Article  CAS  PubMed  Google Scholar 

  • Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223: 77–85

    Article  PubMed Central  PubMed  Google Scholar 

  • Rinker B, Liau JY (2011) A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps. J Hand Surg Am 36 (5): 775–781

    Article  PubMed  Google Scholar 

  • Rinker BL, KY (2009) A Prospective Randomized Study Comparing Woven Polyglycolic Acid and Autogenous Vein Conduits for Reconstruction of Digital Nerve Gaps. J Hand Surg 36 (5): 775–781

    Article  Google Scholar 

  • Shanti RM, Ziccardi VB (2011) Use of decellularized nerve allograft for inferior alveolar nerve reconstruction: a case report. J Oral Maxillofac Surg 69 (2): 550–553

    Article  PubMed  Google Scholar 

  • Taras JS, Jacoby SM (2008) Repair of lacerated peripheral nerves with nerve conduits. Tech Hand Up Extrem Surg 12 (2): 100–106

    Article  PubMed  Google Scholar 

  • Taras JS, Jacoby SM, Lincoski CJ (2011) Reconstruction of digital nerves with collagen conduits. J Hand Surg Am 36 (9): 1441–1446

    Article  PubMed  Google Scholar 

  • Taras JS, Nanavati V, Steelman P (2005) Nerve conduits. J Hand Ther 18 (2): 191–197

    Article  PubMed  Google Scholar 

  • Tavangariana F, Li Y (2012) Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceramics International 38 (8): 6075–6090

    Article  Google Scholar 

  • Valero-Cabre A, Navarro X (2002) Functional impact of axonal misdirection after peripheral nerve injuries followed by graft or tube repair. J Neurotrauma 19: 1475–1485

    Article  PubMed  Google Scholar 

  • Wangensteen KJ, Kalliainen LK (2010) Collagen tube conduits in peripheral nerve repair: a retrospective analysis. Hand (NY) 5 (3): 273–277

    Article  Google Scholar 

  • Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP (2000) A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 106 (5): 1036–1045; discussion 1046–1038

    Google Scholar 

  • Wolfe SW, Strauss HL, Garg R, Feinberg J (2012) Use of bioabsorbable nerve conduits as an adjunct to brachial plexus neurorrhaphy. J Hand Surg Am 37 (10): 1980–1985

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bozkurt, A., Haastert-Talini, K. (2014). Bioartifizielle Nervenimplantate und alternative Rekonstruktionsverfahren. In: Kretschmer, T., Antoniadis, G., Assmus, H. (eds) Nervenchirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36895-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36895-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36894-3

  • Online ISBN: 978-3-642-36895-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics