Skip to main content

Measuring Material Coefficients of Higher Gradient Elasticity by Using AFM Techniques and Raman-Spectroscopy

  • Chapter
  • First Online:
Generalized Continua as Models for Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

Abstract

Experiments on micro-specimens have shown that the deformation behavior of materials can be size dependent. The size dependence is, for example, reflected in a stiffer elastic response on the sub-microscale. A quantitative understanding of the size effect is important for the design of micro- and nanosize systems. In our paper higher-order theories of elasticity are used for the description of the bending behavior of micro-beams. These include additional material parameters in order to describe a size effect and they go beyond the limits of the classical Boltzmann continuum. In particular couple stress and strain gradient theory of linear elasticity are used in this work as special examples of higher gradient theories. Another objective of the paper is to determine the length scale parameters by measurements performed with extremely small cantilever beams. In particular, deflection measurements are performed and force data are recorded for submicron beams made of silicon and silicon nitride. The tests are performed by using a highly sensitive atomic force microscope. In addition Raman spectroscopy is used for the same purpose. The obtained data is fitted to the formulae of higher elasticity for the bending of slender beams and can be used for evaluation of higher gradient coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Article  MATH  Google Scholar 

  2. Anastassakis, E., Pinczuk, A., Burstein, E.: Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun. 8, 133–138 (1970)

    Article  Google Scholar 

  3. Ascione, F., Mancusi, G.: FRP adhesive lap-joints: a micro-scale mechanical approach. Mech. Res. Commun. 37(2), 169–172 (2010)

    Article  Google Scholar 

  4. Aspnes, D.E., Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Am. Phys. Soc. 27(2), 985–1009 (1983)

    Google Scholar 

  5. Becker, M.: Lokale Messung von Kornorientierungen und inneren mechanischen Spannungen in polykristallinem Solarsilizium mittels Mikro-Ramanspektroskopie. Promotion TU Erlangen-Nürnberg (2006)

    Google Scholar 

  6. Brüller, O., Neff, T.: Elastostatik für Ingenieure. Herbert Utz Verlag, München (2000)

    Google Scholar 

  7. Cosserat, E., Cosserat, F.: Theorie des corps deformables. Hermann et Fils, Paris (1909)

    Google Scholar 

  8. De Wolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1996)

    Article  Google Scholar 

  9. De Wolf, I.: Mechanical stress measurements using micro-Raman spectroscopy. Microsyst. Technol. 5, 13–17 (1998)

    Article  Google Scholar 

  10. Edwards, R.L., Coles, G., Sharpe Jr, W.N.: Comparison of tensile and bulge tests for thin-film silicon nitride. Soc. Exp. Mech. 44(1), 49–54 (2004)

    Article  Google Scholar 

  11. Eringen, A.C.: Polar and nonlocal field theories. In: Continuum Physics, vol. IV. Academic Press, INC., New York (1976)

    Google Scholar 

  12. Eringen, A.C.: Microcontinuum field theories. I Foundations and solids. Springer, New York (1999)

    Google Scholar 

  13. Fleck, N.A., Müller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta metall. mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  14. Guo, X.H., Fang, D.N., Li, X.D.: Measurement of deformation of pure Ni foils by speckle pattern interferometry. Mech. Eng. 27(2), 21–25 (2005)

    Google Scholar 

  15. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  16. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: Investigation of the size effect on the flexural characteristic of Timoshenko beams based on the couple stress theory. Int. J. Eng. Sci. 48(12), 1985–1994 (2010)

    Article  Google Scholar 

  17. Kaßbohm, S.: Fourierreihen zur Berechnung repräsentativer Volumenelemente mit Mikrostruktur. Dissertation, Fak. V, TU Berlin (2006)

    Google Scholar 

  18. Koiter, W.T.: Couple-stresses in the theory of elasticity. Pt. I-II. Proc. Koninkl. Nederland Akad. Wetensh. 67, 17–44 (1964)

    MATH  Google Scholar 

  19. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H. Ch. 1, pp. 1–22. Wiley, N.Y. (1995)

    Google Scholar 

  21. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Sol. 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  22. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)

    Article  Google Scholar 

  23. McFarland, A.W.: Production and analysis of polymer microcantilever parts. Ph.D, Georgia Institute of Technology, Atlanta (2004)

    Google Scholar 

  24. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060–1067 (2005)

    Article  Google Scholar 

  25. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. ARMA 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Müller, I.: Thermodynamik. Bertelsmann Universitätsverlag, Düsseldorf (1972)

    Google Scholar 

  27. Poole, W.J., Ashby, M.F., Fleck, N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mater. 34(4), 559–564 (1996)

    Article  Google Scholar 

  28. Sergo, V., Pezzotti, G., Katagiri, G., Muraki, N., Nishida, T.: Stress dependence of the Raman spectrum of \(\beta \)-silicon nitride. J. Am. Ceram. Soc. 79(3), 781–784 (1996)

    Article  Google Scholar 

  29. Stelmashenko, N.A., Walls, M.G., Brown, L.M., Milman, Y.V.: Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41(10), 2855–2865 (1993)

    Article  Google Scholar 

  30. Toupin, R.A.: Elastic materials with couple-stresses. ARMA 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Truesdell, C.: Die Entwicklung des Drallsatzes. ZAMM 44(4/5), 149–158 (1964)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The present work is supported by DFG MU 1752/33-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang H. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liebold, C., Müller, W.H. (2013). Measuring Material Coefficients of Higher Gradient Elasticity by Using AFM Techniques and Raman-Spectroscopy. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_14

Download citation

Publish with us

Policies and ethics