Skip to main content

Coordination Polymerization (Styrene and Polar Vinyl Monomers)

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 525 Accesses

Synonyms

Polar vinyl monomers; Statistical copolymerization; Stereospecific polymerization; Styrene; Transition metal-catalyzed polymerization

Definition

Coordination polymerization of styrene and polar vinyl monomers is conducted by the use of early transition metal complexes as catalysts to afford highly stereoregular polymers. Statistical copolymerization of some polar vinyl monomers with ethylene is achieved by the use of late transition metal complexes.

General Remarks

Polystyrene and poly(methyl methacrylate) (PMMA) are important commercial polymers which are produced by radical or anionic polymerization. Living radical or anionic polymerization enables us to control of the molecular weight and its distribution of these polymers. However, it is difficult to obtain a high-molecular-weight polymer with controlled microstructures, i.e., stereoregularity, using these polymerization methods. Early transition metal complexes catalyze the coordination-insertion mechanism to give highly...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. For precise reviews, see: (a) Schellenberg J, Tomotsu N (2002) Syndiotactic polystyrene catalysts and polymerization. Prog Polym Sci 27:1925–1982. doi:10.1016/S0079-6700(02)00026-6 (b) Rodrigues A-S, Kirillov E, Carpentier J-F (2008) Group 3 and 4 single-site catalysts for stereospecific polymerization of styrene. Coord Chem Rev 252:2115–2136. doi:10.1016/j.ccr.2007.12.015 (c) Schellenberg J (2009) Recent transition metal catalysts for syndiotactic polystyrene. Prog Polym Sci 34:688–718. doi:10.1016/j.progpolymsci.2009.04.002

    Google Scholar 

  2. (a) Ishihara N, Kuramoto M, Seimiya T, Uoi M (1986) Crystalline syndiotactic polystyrene. Macromolecules 19:2464–2465. doi:10.1021/ma00163a027 (b) Ishihara N, Kuramoto M, Uoi M (1988) Stereospecific polymerization of styrene giving the syndiotactic polymer. Macromolecules 21:3356–3360. doi:10.1021/ma00190a003

    Google Scholar 

  3. Zambelli A, Longo P, Pellecchia C, Grassi A (1987) β-Hydrogen abstraction and regiospecific insertion in syndiotactic polymerization of styrene. Macromolecules 20:2035–2037. doi:10.1021/ma00174a063

    Article  CAS  Google Scholar 

  4. (a) Grassi A, Pellecchia C, Oliva L, Laschi F (1995) A combined NMR and electron spin resonance investigation of the (C5(CH3)5)Ti(CH2C6H5)3/B(C6F5)3 catalytic system active in the syndiospecific styrene polymerization. Macromol Chem Phys 196:1093–1100. doi:10.1002/macp.1995.021960411 (b) Manhanthappa MK, Waymouth RM (2001) Titanium-mediated syndiospecific styrene polymerizations: role of oxidation state. J Am Chem Soc 123:12093–12094. doi:10.1021/ja016521j

    Google Scholar 

  5. Longo P, Proto A, Zambelli A (1995) Syndiotactic specific polymerization of styrene: driving energy of the steric control and reaction mechanism. Macromol Chem Phys 196:3015–3029. doi:10.1002/macp.1995.021960924

    Article  CAS  Google Scholar 

  6. (a) Ready TE, Day RO, Chien JCW, Rausch MD (1993) (η5-Indenyl) trichlorotitanium. An improved syndiotactic polymerization catalyst for styrene. Macromolecules 26:5822–5823. doi:10.1021/ma00073a046 (b) Foster P, Chien JCW, Rausch MD (1996) Highly stable catalysts for the stereospecific polymerization of styrene. Organometallics 15:2404–2409. doi:10.1021/om950990a (c) Schneider N, Prosenc M-H, Brintzinger H-H (1997) Cyclopenta[l]phenanthrene titanium trichloride derivatives: syntheses, crystal structure and properties as catalysts for styrene polymerization. J Organomet Chem 545:291–295. doi:10.1016/S0022-328X(97)00251-9

    Google Scholar 

  7. Kawabe M, Murata M (2001) Syndiospecific living polymerization of 4-methylstyrene and styrene with (trimethyl)pentamethylcyclopentadienyltitanium/tris(pentafluorophenyl)borane/trioctylaluminum catalytic system. J Polym Sci Part A: Polym Chem 39:3692–3706. doi:10.1002/pola.10022

    Article  CAS  Google Scholar 

  8. Luo Y, Baldamus J, Hou Z (2004) Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene-ethylene copolymerization: unprecedented incorporation of syndiotactic styrene-styrene sequences in styrene-ethylene copolymers. J Am Chem Soc 126:13910–13911. doi:10.1021/ja046063p

    Article  CAS  Google Scholar 

  9. Beckerle K, Manivannan R, Spaniol TP, Okuda J (2006) Living isospecific styrene polymerization by chiral benzyl titanium complexes that contain a tetradentate [OSSO]-type bis(phenolato) ligand. Organometallics 25:3019–3026. doi:10.1021/om060047e

    Article  CAS  Google Scholar 

  10. For precise reviews, see: (a) Yasuda H (2002) Organo-rare-earth-metal initiated living polymerizations of polar and nonpolar monomers. J Organomet Chem 647: 128–138. doi:10.1016/S0022-328X(01)01357-2 (b) Chen EY-X (2009) Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem Rev 109: 5157–5214. doi:10.1021/cr9000258

    Google Scholar 

  11. (a) Yasuda H, Yamamoto H, Yokota K, Miyake S, Nakamura A (1992) Synthesis of monodispersed high molecular weight polymers and isolation of an organolanthanide(III) intermediate coordinated by a penultimate poly(MMA) unit. J Am Chem Soc 114: 4908–4910. doi:10.1021/ja00038a069 (b) Yasuda H, Yamamoto H, Yamashita M, Yokota K, Nakamura A, Miyake S, Kai Y, Kanehisa N (1993) Synthesis of high molecular weight poly(methyl methacrylate) with extremely low polydispersity by the unique function of organolanthanide(III) complexes. Macromolecules 26: 7134–7143. doi:10.1021/ma00078a004 (c) Ihara E, Morimoto M, Yasuda H (1995) Living polymerizations and copolymerizations of alkyl acrylates by the unique catalysis of rare earth metal complexes. Macromolecules 28: 7886–7892. doi:10.1021/ma00127a040

    Google Scholar 

  12. Nodono M, Tokimitsu T, Tone S, Makino T, Yanagase A (2000) Chain transfer polymerization of methyl methacrylate initiated by organolanthanide complexes. Macromol Chem Phys 201:2282–2288. doi:10.1002/1521-3935(20001101)201:17<2282::AID-MACP2282>3.0.CO;2-K

    Article  CAS  Google Scholar 

  13. Soga K, Deng H, Yano T, Shiono T (1994) Stereospecific polymerization of methyl methacrylate initiated by dimethylzirconocene/B(C6F5)3 (or Ph3CB(C6F5)4)/Zn(C2H5)2. Macromolecules 27:7938–7940. doi:10.1021/ma00104a063

    Article  CAS  Google Scholar 

  14. (a) Bolig AD, Chen EY-X (2004) ansa-Zirconocene ester enolates: synthesis, structure, reaction with organo-Lewis acids, and application to polymerization of methacrylates. J Am Chem Soc 126: 4897–4906. doi:10.1021/ja031558k (b) Miyake GM, Mariott WR, Chen EY-X (2007) Asymmetric coordination polymerization of acrylamides by enantiomeric metallocenium ester enolate catalysts. J Am Chem Soc 129: 6724–6725. doi:10.1021/ja072073p

    Google Scholar 

  15. Li Y, Ward DG, Reddy SS, Collins S (1997) Polymerization of methyl methacrylate using zirconocene initiators: polymerization mechanisms and applications. Macromolecules 30:1875–1883. doi:10.1021/ma961472u

    Article  CAS  Google Scholar 

  16. For precise reviews, see: (a) Boffa LS, Novak BM (2000) Copolymerization of polar monomers with olefins using transition-metal complexes. Chem Rev 100: 1479–1493. doi:10.1021/cr990251u (b) Nakamura A, Ito S, Nozaki K (2009) Coordination-insertion copolymerization of fundamental polar monomers. Chem Rev 109: 5215–5244. doi:10.1021/cr900079r

    Google Scholar 

  17. (a) Yasuda H, Furo M, Yamamoto H, Nakamura A, Miyake H, Kibino N (1992) New approach to block copolymerizations of ethylene with alkyl methacrylates and lactones by unique catalysis with organolanthanide complexes. Macromolecules 25:5115–5116. doi:10.1021/ma00045a045 (b) Desurmont G, Tokimitsu T, Yasuda H (2000) First controlled block copolymerizations of higher 1-olefins with polar monomers using metallocene type single component lanthanide initiators. Macromolecules 33: 7679–7681. doi:10.1021/ma000679r

    Google Scholar 

  18. (a) Purgett MD, Vogl O (1988) Functional polymers. XLVIII. Polymerization of ω-alkenoate derivatives. J Polym Sci Part A Polym Chem 26:677–700. doi:10.1002/pola.1988.080260302 (b) Aaltonen P, Lofgren B (1995) Synthesis of functional polyethylenes with soluble metallocene/methylaluminoxane catalyst. Macromolecules 28: 5353–5357. doi:10.1021/ma00119a027

    Google Scholar 

  19. Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J Am Chem Soc 118:267–268

    Article  CAS  Google Scholar 

  20. Nakamura A, Anselment TMJ, Claverie J, Goodall B, Jordan RF, Mecking S, Rieger B, Sen A, van Leeuwen PWNM, Nozaki K (2012) Ortho-Phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination insertion copolymerization of polar vinyl monomers. Acc Chem Res 46:1438–1439. doi:10.1021/ar300256h and references within

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Shiono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tanaka, R., Shiono, T. (2014). Coordination Polymerization (Styrene and Polar Vinyl Monomers). In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_180-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_180-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics