Skip to main content

Transcranial Magnetic Stimulation Coupled To EEG: A New Tool to Assess Brain Function in Coma

  • Chapter
  • 2739 Accesses

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

Over the last decade, there has been a growing interest in the scientific and clinical literature concerning non-communicating patients who survive severe brain injury, referred to as patients with disorders of consciousness [1]. To date, the gold standard to assess the level of consciousness in these patients is behavior. Diagnosis is based on a patient’s responsiveness or lack of response to command. After the comatose phase, during which patients lie with eyes closed and cannot be aroused, some patients regain full consciousness while others progress to a state of preserved wakefulness in the absence of awareness (i. e., vegetative state or unresponsive wakefulness syndrome) [2]. Others show fluctuating signs of awareness, such as visual pursuit, localization to pain or reproducible response to command but they remain unable to communicate consistently; this state is called minimally conscious state [3] and has been recently subcategorized into minimally conscious state plus (presence of response to command, verbalization or intentional communication) and minus (presence of signs of consciousness not related to language processing, such as visual pursuit) [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gosseries O, Bruno MA, Chatelle C et al (2011) Disorders of consciousness: what’s in a name? Neurorehabilitation 28:3–14

    PubMed  Google Scholar 

  2. Laureys S, Celesia G, Cohadon F et al (2010) Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 8:68

    Article  PubMed  Google Scholar 

  3. Giacino JT, Ashwal S, Childs N et al (2002) The minimally conscious state: Definition and diagnostic criteria. Neurology 58:349–353

    Article  PubMed  Google Scholar 

  4. Bruno MA, Vanhaudenhuyse A, Thibaut A, Moonen G, Laureys S (2011) From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol 258:1373–1384

    Article  PubMed  Google Scholar 

  5. Schnakers C, Vanhaudenhuyse A, Giacino J et al (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 9:35

    Article  PubMed  Google Scholar 

  6. Godbolt AK, Stenson S, Winberg M, Tengvar C (2012) Disorders of consciousness: Preliminary data supports added value of extended behavioural assessment. Brain Inj 26:188–193

    Article  PubMed  Google Scholar 

  7. Giacino JT, Kalmar K, Whyte J (2004) The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85:2020–2029

    Article  PubMed  Google Scholar 

  8. Seel RT, Sherer M, Whyte J et al (2010) Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil 91:1795–1813

    Article  PubMed  Google Scholar 

  9. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313:1402

    Article  PubMed  CAS  Google Scholar 

  10. Monti MM, Vanhaudenhuyse A, Coleman MR et al (2010) Willful modulation of brain activity in disorders of consciousness. N Engl J Med 362:579–589

    Article  PubMed  CAS  Google Scholar 

  11. Cruse D, Chennu S, Chatelle C et al (2011) Bedside detection of awareness in the vegetative state: a cohort study. Lancet 378:2088–2094

    Article  PubMed  Google Scholar 

  12. Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Ann Rev Neurosci 25:221–250

    Article  PubMed  CAS  Google Scholar 

  13. Massimini M, Boly M, Casali A, Rosanova M, Tononi G (2009) A perturbational approach for evaluating the brain’s capacity for consciousness. Prog Brain Res 177:201–214

    Article  PubMed  Google Scholar 

  14. Laureys S, Goldman S, Phillips C et al (1999) Impaired effective cortical connectivity in vegetative state. Neuroimage 9:377–382

    Article  PubMed  CAS  Google Scholar 

  15. Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, Maquet P (2000) Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355:1790–1791

    Article  PubMed  CAS  Google Scholar 

  16. Laureys S, Lemaire C, Maquet P, Phillips C, Franck G (1999) Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry 67:121

    Article  PubMed  CAS  Google Scholar 

  17. Thibaut A, Bruno MA, Chatelle C et al (2012) Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J Rehabil Med 44:487–494

    Article  PubMed  Google Scholar 

  18. Heine L, Soddu A, Gómez F et al (2012) Resting state networks and consciousness: Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Front Psychol 3:295

    Article  PubMed  Google Scholar 

  19. Soddu A, Vanhaudenhuyse A, Demertzi A et al (2011) Resting state activity in patients with disorders of consciousness. Funct Neurol 26:37–43

    PubMed  Google Scholar 

  20. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ et al (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171

    Article  PubMed  Google Scholar 

  21. Weiss N, Galanaud D, Carpentier A et al (2008) A combined clinical and MRI approach for outcome assessment of traumatic head injured comatose patients. J Neurol 255:217–223

    Article  PubMed  Google Scholar 

  22. Fernández-Espejo D, Bekinschtein T, Monti M et al (2011) Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage 54:103–112

    Article  PubMed  Google Scholar 

  23. Newcombe V, Williams G, Scoffings D et al (2010) Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications. J Neurol Neurosurg Psychiatry 81:552–561

    Article  PubMed  Google Scholar 

  24. Perlbarg V, Puybasset L, Tollard E, Lehericy S, Benali H, Galanaud D (2009) Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: a diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp 30:3924–3933

    Article  PubMed  Google Scholar 

  25. Voss HU, Uluc AM, Dyke JP et al (2006) Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116:2005–2011

    Article  PubMed  CAS  Google Scholar 

  26. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36

    Article  PubMed  Google Scholar 

  27. Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Article  PubMed  CAS  Google Scholar 

  28. Rogasch NC, Fitzgerald PB (2013) Assessing cortical network properties using TMS-EEG. Human brain mapping. Hum Brain Mapp (in press)

    Google Scholar 

  29. Rosanova M, Gosseries O, Casarotto S et al (2012) Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 135:1308–1320

    Article  PubMed  Google Scholar 

  30. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232

    Article  PubMed  CAS  Google Scholar 

  31. Rosanova M, Casarotto S, Pigorini A, Canali P, Casali AG, Massimini M (2012) Combining transcranial magnetic stimulation with electroencephalography to study human cortical excitability and effective connectivity. In: Fellin T, Michael H (eds) Neuronal Network Analysis. Springer, Berlin, p 118

    Google Scholar 

  32. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29:7679–7685

    Article  PubMed  CAS  Google Scholar 

  33. Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    PubMed  CAS  Google Scholar 

  34. Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322:876–880

    Article  PubMed  CAS  Google Scholar 

  35. Massimini M, Ferrarelli F, Esser SK et al (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA 104:8496–8501

    Article  PubMed  CAS  Google Scholar 

  36. Massimini M, Ferrarelli F, Murphy M et al (2010) Cortical reactivity and effective connectivity during REM sleep in humans. Cogn Neurosci 1:176–183

    Article  PubMed  Google Scholar 

  37. Ferrarelli F, Massimini M, Sarasso S et al (2010) Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA 107:2681–2686

    Article  PubMed  CAS  Google Scholar 

  38. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ et al (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171

    Article  PubMed  Google Scholar 

  39. Boveroux P, Vanhaudenhuyse A, Bruno MA et al (2010) Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053

    Article  PubMed  CAS  Google Scholar 

  40. Schrouff J, Perlbarg V, Boly M et al (2011) Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 57:198–205

    Article  PubMed  CAS  Google Scholar 

  41. Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT (2010) Functional connectivity and alterations in baseline brain state in humans. Neuroimage 49:823–834

    Article  PubMed  Google Scholar 

  42. Boly M, Garrido MI, Gosseries O et al (2011) Preserved feedforward but impaired top-down processes in the vegetative state. Science 332:858–862

    Article  PubMed  CAS  Google Scholar 

  43. Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9:556–559

    Article  PubMed  Google Scholar 

  44. Tononi G (2010) Information integration: its relevance to brain function and consciousness. Arch Ital Biol 148:299–322

    PubMed  CAS  Google Scholar 

  45. Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227

    Article  PubMed  CAS  Google Scholar 

  46. Arthuis M, Valton L, Regis J et al (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132:2091–2101

    Article  PubMed  Google Scholar 

  47. Boly M, Perlbarg V, Marrelec G et al (2012) Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci USA 109:5856–5861

    Article  PubMed  CAS  Google Scholar 

  48. Boly M, Massimini M, Tononi G (2009) Theoretical approaches to the diagnosis of altered states of consciousness. Prog Brain Res 177:383–398

    Article  PubMed  Google Scholar 

  49. Tononi G (2008) Consciousness as integrated information: a provisional manifesto. Biol Bull 215:216–242

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Belgian National Funds for Scientific Research (FNRS), the European Commission, the James McDonnell Foundation, the Mind Science Foundation, the French Speaking Community Concerted Research Action (ARC-06/11–340), the Fondation Médicale Reine Elisabeth and the University of Liège.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Laureys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gosseries, O., Boly, M., Laureys, S. (2013). Transcranial Magnetic Stimulation Coupled To EEG: A New Tool to Assess Brain Function in Coma. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics