Skip to main content

High Quality of Service and Energy Efficient MAC Protocols for Wireless Sensor Networks

  • Chapter
  • First Online:
Inter-cooperative Collective Intelligence: Techniques and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 495))

Abstract

Wireless sensor networks (WSNs) are increasingly gaining impact in our day to day lives. They are finding a wide range of applications in various domains, including health care, assisted and enhanced-living scenarios, industrial and production monitoring, control networks, and many other fields. In future, WSNs are expected to be integrated into the “Internet of Things”, where sensor nodes join the Internet dynamically, and use it tocollaborate and accomplish their tasks. As wireless sensor networks being used in many emerging applications the requirement of providing high quality of service (QoS ) is becoming ever more necessary. This highlights major issues like collision, scalability, latency, throughput and energy consumption. In addition mobile sensor network faces further challenges like link failure, neighbourhood information, association, scheduling, synchronisation and collision. Medium Access Control (MAC) protocols play vital role in solving these key issues. This chapter presents the fundamentals of MAC protocols and explains the specific requirements and problems these protocols have to withstand for WSN. The QoS is addressed for both static and mobile sensor networks with detailed case study of the IEEE 802.15.4 WPAN standard. Research challenges with literature survey and further directions are also discussed. The chapter ends with conclusions and references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A. Tobagi, L. Kleinrock Packet Switching in Radio Terminals Part II The Hidden Terminal Problem in CSMA and Busy Tone Solution, IEEE Transaction on, Communications, 23(12), pp. 1417–1433, 1975

    Google Scholar 

  2. The Editors of IEEE 802.11; IEEE standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Nov 1997

    Google Scholar 

  3. P. Karn, A New Channel Access Method for Packet Radio, Proceedings of ARRL/CRRL Amateur Radio, 9\(^{th}\) Computer Network Conference, pp. 134–140, Sep 1990

    Google Scholar 

  4. V. Bharghavan, MACAW: A Medium Access for Wireless LANS, Proceedings of ACM SIGCOMM 94 (UK, London, 1994)

    Google Scholar 

  5. I. Rubin, Access Control Disciplines for Multi-Access Communication Channels reservation and TDMA Schemes. IEEE Trans. Inf. Theo. 25(5), 516–536 (1979)

    Article  MATH  Google Scholar 

  6. S. Glisic, B. Vucetic, Spread Spectrums CDMA Syst. Wireless Commun. (Artech House, Boston, MA, 1997)

    Google Scholar 

  7. A.M.J. Goiser, Spread Spectrum Techniques (Springer Verlag, New York, 1998)

    Book  Google Scholar 

  8. A. H. M. Ross, K. S. Gilhausen, CDMA Technology and IS-95 North American Standard, IEEE Press, the Communications Handbook, pp. 199–212, 1996

    Google Scholar 

  9. P. H. Lehne, M. Petersen, An overview of smart antenna technology for mobile communication systems, IEEE Communication Surveys and Tutorials, vol. 2, no. 4, 1999

    Google Scholar 

  10. A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull and J. McGehan A Comparison of Hyper LAN/2 and IEEE 802.11 a Wireless LAN standard, IEEE Communication Magazine, vol. 40, no.5, pp. 172–180, 2002

    Google Scholar 

  11. ETSI. TR 101 683, HYPERLAN Type 2: System Overview, Feb 2000

    Google Scholar 

  12. ETSI. TR 101 475, BRAN HYPERLAN Type 2: Physical Layer, March 2000

    Google Scholar 

  13. ETSI. TR 101 761–1, BRAN HYPERLAN Type 2: Data Link Control Layer Part1 Basic Data Transport Function, March 2000

    Google Scholar 

  14. ETSI. TR 101 761–2, BRAN HYPERLAN Type 2: Data Link Control Layer Part2, Radio Link Control Protocol Basic Functions, March 2000

    Google Scholar 

  15. M.J. Karol, Z. Liu, K.Y. Eng, An efficient demand-assignment multiple access protocol for wireless (ATM) networks. Wireless Netw. 1(3), 269–279 (1995)

    Article  Google Scholar 

  16. N. Passas, S. Paskalis, D. Vali, L. Merakos, Quality of service oriented medium access control for wireless ATM networks. IEEE Commun. Mag. 35(11), 42–50 (1997)

    Article  Google Scholar 

  17. O. Sharon, E. Altman, An efficient polling MAC for wireless LAN. IEEE/ACM Trans. Netw. 9(4), 439–451 (2001)

    Article  Google Scholar 

  18. H. Takagi, Analysis of polling systems (MIT Press, Cambridge, MA, 1986)

    Google Scholar 

  19. F.A. Tabagi, L. Kleinrock, Packet switching in radio channels, Part III polling and dynamic split channels reservation multiple access. IEEE Trans. Commun. 24(8), 832–845 (1976)

    Article  Google Scholar 

  20. IEEE 802.4 Token Passing Buss Access Method, 1985

    Google Scholar 

  21. H.J. Moon, H.S. Park, S.C. Ahn, W.H. Kwon, Performance degradation of IEEE 802.4 Token buss network in noisy environment. Comput. Commun. 21, 547–557 (1998)

    Article  Google Scholar 

  22. N. Malpani, Y. Chen, N. Vadiya, J. Welch Distributed Token Circulation on mobile Adhoc Networks, IEEE Trans. Mobile. Comput. 4(2), pp. 154–165, 2004

    Google Scholar 

  23. A. Willig, A. Wolisz, Ring stability of the PROFIBUS token passing protocol over error prone links. IEEE Trans. Ind. Electro. 48(5), 1025–1033 (2001)

    Article  Google Scholar 

  24. N. Abramson, Development of the ALOHANT. IEEE Trans. Inf. Theory 31(2), 119–123 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Kelinrok, F.A. Tobagi, Packet Switching in radio channels Part1, Carrier Sense Multiple Access Models and their Throughput/Delay Characteristics. IEEE Trans. commun. 23(12), 1400–1416 (1975)

    Article  Google Scholar 

  26. W. Ye, J. Heidemann, and D. Estrin, Medium Access Protocol with coordinated adaptive sleeping for Wireless Sensor Networks, IEEE/ACM Transaction on Networking, 2004

    Google Scholar 

  27. E.Y.A. Lin, J.M. Rabaey, A. Wolisz, Power Efficient Rendez-vous schemes for dense wireless sensor networks, IEEE ICC04 (June, Paris, 2004)

    Google Scholar 

  28. C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava, Optimizing sensor network in the energy latency density design space. IEEE Trans. Mobile Comput. 1(1), 70–80 (2002)

    Article  Google Scholar 

  29. J. Taneja, J. Jeong, and D. Culler,Design, modeling and capacity planning for micro-solar power wireless sensor networks, IPSN08, 7\(^{th}\) International conference on information processing in sensor networks, IEEE Computer society, Washington DC, USA, pp. 407–418, 2008

    Google Scholar 

  30. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, Directed diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16 (2003)

    Article  Google Scholar 

  31. A. J. Goldsmith and S. B. Wicker Design Challenges for Energy Constrained Ad-hoc Wireless Networks, IEEE Wireless Communications, vol. 9, no. 4, pp. 8–27, 2002

    Google Scholar 

  32. W. Ye, J. Heidemann, D. Estrin”, An energy-efficient MAC protocol for wireless sensor networks. IEEE INFOCOM 2002, 1567–1576 (2002)

    Google Scholar 

  33. T. V. Dam and K. Langendoen, An Adaptive Energy Efficient MAC Protocol for Wireless Sensor Networks, Ist International Conference on Embedded Networked Sensor Systems, pp. 171–180, Nov 2003

    Google Scholar 

  34. E.H. Callaway, Wireless Sensor Networks Architecture and Protocols (Florida, Boca Raton, 2003)

    Book  Google Scholar 

  35. E. Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Naeve, B. Heile, V. Bahl, Home network with IEEE 802.15.4: A developing standard for Low rate wireless personal area network. IEEE Commun. Mag. 40(8), 70–77 (2002)

    Article  Google Scholar 

  36. LAN/MAN standard committee of the IEEE Computer Society. IEEE standard for information technology, Telecommunications and information exchange between systems, Local and Metropolitan area network specific requirements Part 15.4, Wireless Medium Access Control and Physical Layer specifications for low rate wireless personal area, network, Oct 2003.

    Google Scholar 

  37. G. Lu, B. Krishnamachari and C. S. Raghavendra, Performance Evaluation of the IEEE 802.15.4 MAC for low rate low power wireless networks, IEEE International conference on performance computing and communications, Phoenix, pp. 701–706, April 2004

    Google Scholar 

  38. W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, Adaptive protocol for information dissemination in wireless sensor networks. IEEE Trans. Wireless Netw 1(4), 660–670 (2002)

    Article  Google Scholar 

  39. W. B. Heinzelman, A. P. Chandrakasan and H. Balakrishnan, Energy Efficient Communication protocol for wireless microsensor networks, 3\(^{rd}\) Hawaii international conference on system services, Hawaii, pp. 174–185, Jan 2000

    Google Scholar 

  40. K. Sohrabi, J. Gao, V. Ailawadhi, G.J. Pottie, Protocol for self organization of a wireless sensor network. IEEE Personal Commun. 7(5), 16–27 (2000)

    Article  Google Scholar 

  41. K. Sohrabi, G. J. Pottie Performance of a Novalself organize protocol for wireless ad-hoc sensor networks, IEEE 5\(^{th}\) Vehicular technology conference, pp. 1222–1226, 1999

    Google Scholar 

  42. A. Woo, D. Culler, A transmission control scheme for media access in sensor networks. ACM/IEEE Int. Conf. Mobile Comput. Netw. (Mobicom) 2001, 221–235 (2001)

    Google Scholar 

  43. C.S. Raghavendra, S. Singh, PAMAS power aware multi access protocol with signaling for Ad-hoc networks. ACM Comput. Commun. 27, 5–26 (1998)

    Google Scholar 

  44. J. Zheng, M. J. Lee, Will IEEE 802.15.4 Make Ubiquitous Networking a Reality?, IEEE Commun. Mag. vol. 42, no.6, pp. 140–146, 2004

    Google Scholar 

  45. J.A. Gutierrez, M. Naeve, E. Callaway, V. Mitter, B. Heile, IEEE 802.15.4 A developing standard for low power low cost wireless personal area network. IEEE Netw. Mag. 15(2), 12–19 (2001)

    Article  Google Scholar 

  46. M. Grossglauser, D. Tse, Mobility increases the capacity of Adhoc wireless networks. IEEE Infocom 2001: The Conf. Comput. Commun. 1(3), 1360–1369 (2001)

    Google Scholar 

  47. J. Luo, J. Panchard, M. Piorkowski, M. Grossglauser, J. P. Hubaux, MobiRoute: Routing towards a mobile sink for improving lifetime in sensor networks, 2nd IEEE/ACM International Conference on Distributed Computing in Sensor Systems, San Francisco, pp. 480–497, Jun 2006

    Google Scholar 

  48. Z. Vincze, R. Vida, Multi-hop Wireless Sensor Networks with Mobile Sink (ACM Conference on Emerging Network Experiment and Technology, Toulouse, France, Oct, 2005)

    Google Scholar 

  49. Prasad Raviraj, Hamid Sharif, Michael Hempel, Song Ci, MOBMAC- an energy efficient and low latency MAC for mobile wireless sensor networks. IEEE Syst. 370–375, 14–17 (Aug 2005)

    Google Scholar 

  50. S. A. Munir, B. Ren, W. Jiao, B. Wang, D. Xie, J. Ma, Mobile wireless sensor network architecture and enabling technologies for ubiquitous, Conference on Advanced Infonnation Networking and Applications Workshops (AINAW ’07), May 2007, pp. 113–120

    Google Scholar 

  51. M. Rahimi, H. Shah, G.S. Sukhatme, J. Heideman, D. Estrin, Studying the feasibility of energy harvesting in a mobile sensor networks. Proc. IEEE Int. Conf. Robotics Automation, Taipai 1, 19–24 (May 2003)

    Google Scholar 

  52. A. Chakrabarti, A. Sabharwal, B. Aazhang, Using predictable observer mobility for power efficient design of sensor networks, 2\(^{nd}\) International Workshop on Infonnation Processing in Sensor. Networks 2634, 129–145 (Apr 2003)

    Google Scholar 

  53. M. Ali, T. Suleman, Z. A. Uzmi, MMAC: a mobility-adaptive, collision-free mac protocol for wireless sensor networks, Proceedings of the 24th IEEE IPCCC’05, Phoenix, pp 401–407, 2005

    Google Scholar 

  54. S. R. Gandhamet al., Energy Efficient Schemes for Wireless Sensor Networks With Multiple Mobile Base Stations, Proc. IEEE GLOBECOM, 2003

    Google Scholar 

  55. J. Luo, J.-P. Hubaux, Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor Networks (Proc, IEEE INFOCOM, 2005)

    Google Scholar 

  56. E. Ekici, Y. Gu, D. Bozdag, Mobility-based communication in wireless sensor networks. IEEE Commun. Mag. 44(7), 56–62 (Jul 2006)

    Article  Google Scholar 

  57. A. Kansalet al., Intelligent Fluid Infrastructure for Embedded Networks, Proc. 2nd Int’l. Conf. Mobile Systems Applications and Services, 2004

    Google Scholar 

  58. R. Shah et al., Data mules: Modelling a Three-Tier Architecture for Sparse Sensor Networks (Proc. IEEE Wksp, Sensor Network Protocols and Apps, 2003)

    Google Scholar 

  59. M. Ghassemian, H. Aghvami, An investigation of the impact of mobility on the protocol performance in wireless sensor networks, 24th Biennial Symposium on, Communications, pp 310–315, Jun 2008

    Google Scholar 

  60. S. Narwaz, M. Hussain, S. Watson, N. Trigoni, P.N. Green, An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools (Sensors and Software Systems, Springer, In, 2009)

    Google Scholar 

  61. A. Pandya, A. Kansal, G. Pottie, Goodput and delay in networks with controlled mobility 2008 IEEE Aerospace Conference, pp 1323–1330, Mar. 2008

    Google Scholar 

  62. K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, G.S. Sukhatme Robomote: Enabling Mobility in Sensor Networks, IEEE/ACM, 4\(^{th}\) International Conference on Information Processing in Sensor Networks, (IPSN/SPOTS), pp 404–409, April 2005

    Google Scholar 

  63. A. A. Somasundara, A. Ramamoorthy, M. B. Srivastava, Mobile Element Scheduling for Efficient Data Collection in Wireless Sensor Networks with Dynamic Deadlines Proc. 25th IEEE Int’l. Real-Time Systems, Symposium, 2004

    Google Scholar 

  64. D. Jea, A. A. Somasundara, M. B. Srivastava, Multiple Controlled Mobile Elements (Data Mules) for Data Collection In Sensor Networks Proc. IEEE/ACM Int’l. Conf. Distrib. Comp, in Sensor Systems, 2005

    Google Scholar 

  65. S. Lam, A carrier sense multiple access protocol for local networks. Comput. Netw. 4, 21–32 (1980)

    Google Scholar 

  66. W.T.H. Woon, TCWan, Performance evaluation of IEEE 802.15.4 wireless multi-hop networks: simulation and testbed approach International Journal of Ad-Hoc and Ubiquitous. Computing 3(1), 57–66 (2008)

    Google Scholar 

  67. J. Zheng, Myung J. Lee, A comprehensive performance study of IEEE 802.15.4 Sensor Network Operations, IEEE Press, Wiley Interscience, Chapter 4, pp 218–237, 2006

    Google Scholar 

  68. A. Koubaa, M. Alves, E. Tovar, YQ Song, On The Performance Limits of Slotted CSMA/CA in IEEE 802.15.4 for Broadcast Transmissions in Wireless Sensor Networks, IPP-HURRAY Technical, Report, TR-060401, April 2006

    Google Scholar 

  69. M. Laibowitz, J.A. Paradiso, Parasitic Mobility for pervasive Networks, 3\(^{rd}\) International Conference on Pervasive Computing, (PERVASIVE 2005) (Munich, Germany, May, 2005)

    Google Scholar 

  70. L. Hu, D. Evans, Localization for Mobile Sensor Networks, ACM, Mobi-Com 2004, Sep, 2004

    Google Scholar 

  71. C. Chen, J. Ma, Simulation Study of AODV performance over IEEE 802.15.4 MAC in WSN with Mobile Sinks, Proc of Advanced Information Networking and Applications, Workshop 2007, (AINAW’07), pp. 159–163, 2007

    Google Scholar 

  72. S.B. Attia, A. Cunha, A. Koubaa, M. Alves, Fault Tolerance Mechanism for Zigbee Wireless Sensor Networks, 19\(^{th}\)Euromicro Conference on Real Time Systems (ECRTS’07) (Pisa, Italy, July, 2007)

    Google Scholar 

  73. K. Zen, D. Habibi, A. Rassau, I. Ahmed, Performance Evaluation of IEEE 802.15.4 for Mobile Sensor Networks, 5\(^{th }\)International Conference on Wireless and Optical Communications Networks, Surabaya, Indonesia, 2008

    Google Scholar 

  74. Sung-Chan Choi, Jang-Won Lee and Yeonsoo Kim, An Adaptive Mobility-Supporting MAC protocol for Mobile Sensor Networks, IEEE Vehicular Technology Conference, pp 168–172, 2008

    Google Scholar 

  75. H. Pham, S. Jha, An adaptive mobility-aware MAC protocol for sensor networks (MS-MAC), in: Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), pp 214–226, 2004

    Google Scholar 

  76. P. Lin, C. Qiao, X. Wang, Medium access control with a dynamic duty cycle for sensor networks. Proc. IEEE Wireless Commun. Netw. Conf. (WCNC) 3, 1534–1539 (2004)

    Google Scholar 

  77. S.A.Hameed, E.M.Shaaban, H.M.Faheem, M.S.Ghoniemy, Mobility-Aware MAC protocol for Delay Sensitive Wireless Sensor Networks IEEE Ultra Modern Telecommunications & Workshops, pp 1–8, Oct 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Muhammad Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khan, B.M., Bilal, R. (2014). High Quality of Service and Energy Efficient MAC Protocols for Wireless Sensor Networks. In: Xhafa, F., Bessis, N. (eds) Inter-cooperative Collective Intelligence: Techniques and Applications. Studies in Computational Intelligence, vol 495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35016-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35016-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35015-3

  • Online ISBN: 978-3-642-35016-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics