Skip to main content

A Unified Constraint Framework for Physical Animation of Articulated Rigid Bodies

  • Conference paper
  • 1824 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Abstract

This paper presents a paradigm for designing and implementing simulators applicable in contemporary computer graphics to animate articulated multibody systems constrained by simultaneously occurring collisions, resting contact, kinematic loops and other non-standard user-defined constraints. Our proposition includes representation of the constraints and a procedure for imposing them. The capabilities of an actual implementation are benchmarked in a fairly complex simulation scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: SIGGRAPH 1994, pp. 23–34 (1994)

    Google Scholar 

  2. Baraff, D.: Linear-time dynamics using lagrange multipliers. In: SIGGRAPH 1996, pp. 137–146 (1996)

    Google Scholar 

  3. Bender, J., Erleben, K., Trinkle, J., Coumans, E.: Interactive Simulation of Rigid Body Dynamics in Computer Graphics. In: STAR Proceedings of Eurographics (2012)

    Google Scholar 

  4. Chatterjee, A., Ruina, A.: A New Algebraic Rigid Body Collision Law Based On Impulse Space Considerations. Journal of Applied Mechanics 65(4), 939–951 (1998)

    Article  Google Scholar 

  5. Chatterjee, A.: On the Realism of Complementarity Conditions in Rigid Body Collisions. Nonlinear Dynamics 20, 159–168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erleben, K.: Stable, Robust, and Versatile Multibody Dynamics Animation (Revised version). PhD Thesis, University of Copenhagen (2005)

    Google Scholar 

  7. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic Publishers (1987)

    Google Scholar 

  8. Featherstone, R.: A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm. The International Journal of Robotics Research 18(9), 867–875 (1999)

    Article  Google Scholar 

  9. Featherstone, R.: A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 2: Trees, Loops, and Accuracy. The International Journal of Robotics Research 18(9), 876–892 (1999)

    Article  Google Scholar 

  10. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2008)

    Google Scholar 

  11. Featherstone, R.: A Beginner’s Guide to 6-D Vectors (Part 1). IEEE Robotics & Automation Magazine 17(3), 83–94 (2010)

    Article  Google Scholar 

  12. Featherstone, R.: A Beginner’s Guide to 6-D Vectors (Part 2). IEEE Robotics & Automation Magazine 17(4), 88–99 (2010)

    Article  Google Scholar 

  13. Gayle, R., Lin, M.C., Manocha, D.: Adaptive Dynamics with Efficient Contact Handling for Articulated Robots. Robotics: Science and Systems (2006)

    Google Scholar 

  14. Kaufman, D.M., Edmunds, T., Pai, D.K.: Fast Frictional Dynamics for Rigid Bodies. ACM Transactions on Graphics 24(3), 946–956 (2005)

    Article  Google Scholar 

  15. Khatib, O.: A unified approach for the motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation RA-3(1), 43–53 (1987)

    Article  Google Scholar 

  16. Kokkevis, E., Metaxas, D.: Efficient Dynamic Constraints for Animating Articulated Figures. Multibody System Dynamics 2, 89–114 (1998)

    Article  MATH  Google Scholar 

  17. Kokkevis, E.: Practical Physics for Articulated Characters. In: Game Developers Conference (2004)

    Google Scholar 

  18. Lilly, K.W.: Efficient Dynamic Simulation of Robotic Mechanisms. Kluwer Academic Publishers (1993)

    Google Scholar 

  19. Mirtich, B.: Impulse-based Dynamic Simulation of Rigid Body Systems. PhD Thesis, University of California at Berkeley (1996)

    Google Scholar 

  20. Ruspini, D.C., Khatib, O.: Collision/Contact Models for the Dynamic Simulation of Complex Environments. In: 9th International Symposium of Robotics Research, pp. 185–195 (1997)

    Google Scholar 

  21. Weinstein, R., Teran, J., Fedkiw, R.: Dynamic Simulation of Articulated Rigid Bodies with Contact and Collision. IEEE Transactions on Visualization and Computer Graphics 12, 365–374 (2006)

    Article  Google Scholar 

  22. Weinstein, R.: Simulation and Control of Articulated Rigid Bodies. PhD Thesis, Stanford University (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stępień, J. (2012). A Unified Constraint Framework for Physical Animation of Articulated Rigid Bodies. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics