Skip to main content

Theoretical Background of Electrochemical Analysis

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

An electrode is a conductor or semiconductor, which directly contacts the electrolyte solution. In an electrochemical system, the input and output are both realized through an electrode. The substrate materials of the commonly used electrodes include noble metals (platinum, gold, silver, etc.), mercury, various kinds of carbon materials and semiconductor materials. Since the electron transfer rate between proteins and electrode surfaces is usually prohibitively slow, due to the burying of the electroactive prosthetic groups of most proteins in the electrically insulated peptide backbones and adsorptive denaturation of proteins on electrode surface, chemically modified electrodes (CMEs) are developed to facilitate the electrochemical analysis of the biomacromolecules and cells. Meanwhile, different electrochemical techniques are employed to meet the requirements of different bioassays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Astuti Y, Topoglidis E, Gilardi G, Durrant JR (2004) Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. Bioelectrochemistry 63(1–2):55–59

    Article  CAS  Google Scholar 

  2. Topoglidis E, Astuti Y, Duriaux F, Gratzel M, Durrant JR (2003) Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes. Langmuir 19(17):6894–6900

    Article  CAS  Google Scholar 

  3. Johnson DC, Lacourse WR (1990) Liquid-chromatography with pulsed electrochemical detection at gold and platinum-electrodes. Anal Chem 62(10):A589–A597

    Google Scholar 

  4. Bas B, Jakubowska M, Kowalski Z (2006) Rapid pretreatment of a solid silver electrode for routine analytical practice. Electroanal 18(17):1710–1717

    Article  CAS  Google Scholar 

  5. Fan CH, Li GX, Zhuang Y, Zhu JQ, Zhu DX (2000) Iodide modified silver electrode and its application to the electroanalysis of hemoglobin. Electroanal 12(3):205–208

    Article  CAS  Google Scholar 

  6. Gutes A, Carraro C, Maboudian R (2011) Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes. Electrochim Acta 56(17):5855–5859

    Article  CAS  Google Scholar 

  7. Li GX, Liao XM, Fang HQ, Chen HY (1994) Direct electron-transfer reaction of hemoglobin at the bare silver electrode. J Electroanal Chem 369(1–2):267–269

    CAS  Google Scholar 

  8. Li GX, Chen HY, Zhu DX (1996) Imidazole modified silver electrode and its application to the investigation of the electrochemistry of cytochrome c. Anal Chim Acta 319(3):275–276

    Article  CAS  Google Scholar 

  9. Eddowes MJ, Hill HAO (1977) Novel method for investigation of electrochemistry of metalloproteins—cytochrome-c. J Chem Soc, Chem Commun 21:771–772

    Article  Google Scholar 

  10. Colon LA, Dadoo R, Zare RN (1993) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. Anal Chem 65(4):476–481

    Article  CAS  Google Scholar 

  11. Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31

    CAS  Google Scholar 

  12. Armstrong FA, Hill HAO, Oliver BN (1984) Surface selectivity in the direct electrochemistry of redox proteins—contrasting behavior at edge and basal planes of graphite. J Chem Soc, Chem Commun 15:976–977

    Article  Google Scholar 

  13. Hagen WR (1989) Direct electron-transfer of redox proteins at the bare glassy-carbon electrode. Eur J Biochem 182(3):523–530

    Article  CAS  Google Scholar 

  14. Lane RF, Hubbard AT (1973) Electrochemistry of chemisorbed molecules. 1. Reactants connected to electrodes through olefinic substituents. J Phys Chem 77(11):1401–1410

    Google Scholar 

  15. Lane RF, Hubbard AT (1973) Electrochemistry of chemisorbed molecules. 2. Influence of charged chemisorbed molecules on electrode-reactions of platinum complexes. J Phys Chem 77(11):1411–1421

    Article  CAS  Google Scholar 

  16. Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119(38):8916–8920

    Article  CAS  Google Scholar 

  17. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, Macdiarmid AG (1977) Electrical-conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098–1101

    Article  CAS  Google Scholar 

  18. Liu HQ, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4(4):671–675

    Article  CAS  Google Scholar 

  19. Saini S, Hall GF, Downs MEA, Turner APF (1991) Organic-phase enzyme electrodes. Anal Chim Acta 249(1):1–15

    Article  CAS  Google Scholar 

  20. Bredas JL, Chance RR, Silbey R (1982) Comparative theoretical-study of the doping of conjugated polymers—polarons in polyacetylene and polyparaphenylene. Phys Rev B 26(10):5843–5854

    Article  CAS  Google Scholar 

  21. Mandler D, Turyan I (1996) Applications of self-assembled monolayers in electroanalytical chemistry. Electroanal 8(3):207–213

    Article  CAS  Google Scholar 

  22. Zhong CJ, Porter MD (1995) Designing interfaces at the molecular-level. Anal Chem 67(23):A709–A715

    Google Scholar 

  23. Otero R, Rosei F, Besenbacher F (2006) Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu Rev Phys Chem 57:497–525

    Article  CAS  Google Scholar 

  24. Tseng TC, Urban C, Wang Y, Otero R, Tait SL, Alcami M, Ecija D, Trelka M, Gallego JM, Lin N, Konuma M, Starke U, Nefedov A, Langner A, Woll C, Herranz MA, Martin F, Martin N, Kern K, Miranda R (2010) Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat Chem 2(5):374–379

    Article  CAS  Google Scholar 

  25. Chua LL, Zaumseil J, Chang JF, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434(7030):194–199

    Article  CAS  Google Scholar 

  26. Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117

    Article  CAS  Google Scholar 

  27. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic metal and organic/organic interfaces. Adv Mater 11(8):605–625

    Article  CAS  Google Scholar 

  28. Qu XG, Chou J, Lu TH, Dong SJ, Zhou CL, Cotton TM (1995) Promoter effect of halogen anions on the direct electrochemical reaction of cytochrome-c at gold electrodes. J Electroanal Chem 381(1–2):81–85

    Google Scholar 

  29. Balzani V (2005) Nanoscience and nanotechnology: a personal view of a chemist. Small 1(3):278–283

    Article  CAS  Google Scholar 

  30. Cao MH, He XY, Chen J, Hu CW (2007) Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Cryst Growth Des 7(1):170–174

    Article  CAS  Google Scholar 

  31. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7(6):1591–1597

    Article  CAS  Google Scholar 

  32. Miao P, Liu L, Nie YJ, Li GX (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron 24(11):3347–3351

    Article  CAS  Google Scholar 

  33. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Edit 48(42):7752–7777

    Article  CAS  Google Scholar 

  34. Valiev R (2002) Materials science—Nanomaterial advantage. Nature 419(6910):887–889

    Article  CAS  Google Scholar 

  35. Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1(11):1036–1043

    Article  CAS  Google Scholar 

  36. Wang J, Wang LH, Liu XF, Liang ZQ, Song SP, Li WX, Li GX, Fan CH (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19(22):3943–3946

    Article  CAS  Google Scholar 

  37. Zhang YZ, Huang L (2012) Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene. Microchim Acta 176(3–4):463–470

    CAS  Google Scholar 

  38. Zhou ND, Wang J, Chen T, Yu ZG, Li GX (2006) Enlargement of gold nanoparticles on the surface of a self-assembled monolayer modified electrode: a mode in biosensor design. Anal Chem 78(14):5227–5230

    Article  CAS  Google Scholar 

  39. Zhu XL, Zhao J, Wu Y, Shen ZM, Li GX (2011) Fabrication of a highly sensitive aptasensor for potassium with a nicking endonuclease-assisted signal amplification strategy. Anal Chem 83(11):4085–4089

    Article  CAS  Google Scholar 

  40. Zhu ZQ, Su YY, Li J, Li D, Zhang J, Song SP, Zhao Y, Li GX, Fan CH (2009) Highly sensitive electrochemical sensor for mercury(II) Ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81(18):7660–7666

    Article  CAS  Google Scholar 

  41. Jang SG, Kramer EJ, Hawker CJ (2011) Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding. J Am Chem Soc 133(42):16986–16996

    Article  CAS  Google Scholar 

  42. Padamwar MN, Patole MS, Pokharkar VB (2011) Chitosan-reduced gold nanoparticles: a novel carrier for the preparation of spray-dried liposomes for topical delivery. J Liposome Res 21(4):324–332

    Article  CAS  Google Scholar 

  43. Xu YY, Wang J, Cao Y, Li GX (2011) Gold nanoparticles based colorimetric assay of protein poly(ADP-ribosyl)ation. Analyst 136(10):2044–2046

    Article  CAS  Google Scholar 

  44. Zhu XL, Li YX, Yang JH, Liang ZQ, Li GX (2010) Gold nanoparticle-based colorimetric assay of single-nucleotide polymorphism of triplex DNA. Biosens Bioelectron 25(9):2135–2139

    Article  CAS  Google Scholar 

  45. Cox JA, Jaworski RK, Kulesza PJ (1991) Electroanalysis with electrodes modified by inorganic films. Electroanal 3(9):869–877

    Article  CAS  Google Scholar 

  46. Zak J, Kuwana T (1983) Chemically modified electrodes and electrocatalysis. J Electroanal Chem 150(1–2):645–664

    Article  CAS  Google Scholar 

  47. Degrand C, Miller LL (1980) An electrode modified with polymer-bound dopamine which catalyzes NADH oxidation. J Am Chem Soc 102(18):5728–5732

    Article  CAS  Google Scholar 

  48. Jaegfeldt H, Torstensson ABC, Gorton LGO, Johansson G (1981) Catalytic-oxidation of reduced nicotinamide adenine-dinucleotide by graphite-electrodes modified with adsorbed aromatics containing catechol functionalities. Anal Chem 53(13):1979–1982

    Article  CAS  Google Scholar 

  49. Jaegfeldt H, Kuwana T, Johansson G (1983) Electrochemical stability of catechols with a pyrene side-chain strongly adsorbed on graphite-electrodes for catalytic-oxidation of dihydronicotinamide adenine-dinucleotide. J Am Chem Soc 105(7):1805–1814

    Article  CAS  Google Scholar 

  50. Facci J, Murray RW (1982) Binding of pentachloroiridite to plasma polymerized vinylpyridine films and electrocatalytic oxidation of ascorbic-acid. Anal Chem 54(4):772–777

    Article  CAS  Google Scholar 

  51. Kuo KN, Murray RW (1982) Electrocatalysis with ferrocyanide electrostatically trapped in an alkylaminesiloxane polymer film on a Pt electrode. J Electroanal Chem 131:37–60

    Google Scholar 

  52. Li FB, Dong SJ (1987) The electrocatalytic oxidation of ascorbic-acid on prussian blue film modified electrodes. Electrochim Acta 32(10):1511–1513

    Article  CAS  Google Scholar 

  53. Tse DCS, Kuwana T (1978) Electrocatalysis of dihydronicotinamide adenosine-diphosphate with quinones and modified quinone electrodes. Anal Chem 50(9):1315–1318

    Article  CAS  Google Scholar 

  54. Bookbinder DC, Lewis NS, Wrighton MS (1981) Heterogeneous one-electron reduction of metal-containing biological molecules using molecular-hydrogen as the reductant—Synthesis and use of a surface-confined viologen redox mediator that equilibrates with hydrogen. J Am Chem Soc 103(25):7656–7659

    Article  CAS  Google Scholar 

  55. Chao S, Robbins JL, Wrighton MS (1983) A new ferrocenophane surface derivatizing reagent for the preparation of nearly reversible electrodes for horse heart ferri/ferrocytochrome c: 2,3,4,5-tetramethyl-1-((dichlorosilyl)methyl)[2]-ferrocenophane. J Am Chem Soc 105(2):181–188

    Article  CAS  Google Scholar 

  56. Lewis NS, Wrighton MS (1981) Electrochemical reduction of horse heart ferricytochrome c at chemically derivatized electrodes. Science 211(4497):944–947

    Article  CAS  Google Scholar 

  57. Cosgrove M, Moody GJ, Thomas JDR (1989) Metal-oxide catalyst membrane electrodes for the determination of hydrogen-peroxide. Analyst 114(12):1627–1632

    Article  CAS  Google Scholar 

  58. Gorton L (1985) A carbon electrode sputtered with palladium and gold for the amperometric detection of hydrogen-peroxide. Anal Chim Acta 178(2):247–253

    Article  CAS  Google Scholar 

  59. Itaya K, Shoji N, Uchida I (1984) Catalysis of the reduction of molecular-oxygen to water at prussian blue modified electrodes. J Am Chem Soc 106(12):3423–3429

    Article  CAS  Google Scholar 

  60. Taniguchi I, Matsushita K, Okamoto M, Collin JP, Sauvage JP (1990) Catalytic-oxidation of hydrogen-peroxide at Ni cyclam modified electrodes and its application to the preparation of an amperometric glucose sensor. J Electroanal Chem 280(1):221–226

    Article  CAS  Google Scholar 

  61. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72

    Article  CAS  Google Scholar 

  62. Avnir D (1995) Organic-chemistry within ceramic matrices-doped sol-gel materials. Accounts Chem Res 28(8):328–334

    Article  CAS  Google Scholar 

  63. Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22(11):2387–2399

    Article  CAS  Google Scholar 

  64. Cai WY, Xu Q, Zhao XN, Zhu JH, Chen HY (2006) Porous gold-nanoparticle-CaCO3 hybrid material: preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry. Chem Mater 18(2):279–284

    Article  CAS  Google Scholar 

  65. Kang XH, Wang J, Tang ZW, Wu H, Lin YH (2009) Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes. Talanta 78(1):120–125

    Article  CAS  Google Scholar 

  66. Wang Y, Wu Y, Wang JW, Di JW (2009) Disposable superoxide anion biosensor based on superoxide dismutase entrapped in silica sol-gel matrix at gold nanoparticles modified ITO electrode. Bioproc Biosyst Eng 32(4):531–536

    Article  CAS  Google Scholar 

  67. Xu JZ, Zhang Y, Li GX, Zhu JJ (2004) An electrochemical biosensor constructed by nanosized silver particles doped sol-gel film. Mat Sci Eng C-Bio S 24(6–8):833–836

    Article  Google Scholar 

  68. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  69. Zoski CG (2007) Handbook of electrochemistry. Elsevier Science, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Li, G., Miao, P. (2013). Theoretical Background of Electrochemical Analysis. In: Electrochemical Analysis of Proteins and Cells. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34252-3_2

Download citation

Publish with us

Policies and ethics