Skip to main content

Chemotaxis-Inspired Cellular Primitives for Self-Organizing Shape Formation

  • Chapter
  • First Online:
Morphogenetic Engineering

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Motivated by the ability of living cells to form specific shapes and structures, we are investigating chemotaxis-inspired cellular primitives for self-organizing shape formation. This chapter details our initial effort to create Morphogenetic Primitives (MPs), software agents that may be programmed to self-organize into user-specified 2D shapes. The interactions of MPs are inspired by chemotaxis-driven aggregation behaviors exhibited by actual living cells. Cells emit a chemical into their environment. Each cell responds to the stimulus by moving in the direction of the gradient of the cumulative chemical field detected at its surface. The artificial chemical fields of individual MPs are explicitly defined as mathematical functions. Genetic programming is used to discover the chemical field functions that produce an automated shape formation capability. We describe the cell-based behaviors of MPs and a distributed genetic programming method that discovers the chemical fields needed to produce macroscopic shapes from simple aggregating primitives. Several examples of aggregating MPs demonstrate that chemotaxis is an effective paradigm for spatial self-organization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, L., Breen, D.: Calculating center of mass in an unbounded 2D environment. J. Graph. Tools 13(4), 53–60 (2008)

    Google Scholar 

  2. Bai, L., Eyiyurekli, M., Breen, D.: Automated shape composition based on cell biology and distributed genetic programming. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 1179–1186 (2008)

    Google Scholar 

  3. Bai, L., Eyiyurekli, M., Breen, D.: An emergent system for self-aligning and self-organizing shape primitives. In: Proceedings of 2nd International Conference on Self-Adaptive and Self-Organizing Systems, pp. 445–454 (2008)

    Google Scholar 

  4. Bai, L., Eyiyurekli, M., Breen, D.: Self-organizing primitives for automated shape composition. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, pp. 147–154 (2008)

    Google Scholar 

  5. Beal, J.: Functional blueprints: an approach to modularity in grown systems. In: Proceedings of 7th International Conference on Swarm Intelligence, pp. 179–190 (2010)

    Google Scholar 

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    Google Scholar 

  7. Bonabeau, E., Guerin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Three-dimensional architectures grown by simple stigmergic agents. Biosystems 56(1), 13–32 (2000)

    Article  Google Scholar 

  8. Bray, D.: Cell Movements. Garland Publishing, New York (2000)

    Google Scholar 

  9. Brown, C.: UNIX Distributed Programming. Prentice Hall, New York (1994)

    MATH  Google Scholar 

  10. Camazine, S.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  11. Davies, J.: Mechanisms of Morphogenesis: The Creation of Biological Form. Elsevier, Amsterdam (2005)

    Google Scholar 

  12. Doursat, R.: The growing canvas of biological development: multiscale pattern generation on an expanding lattice of gene regulatory networks. Int. J. Complex Syst. 1809 (2006)

    Google Scholar 

  13. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing, pp. 167–199. Springer (2008)

    Google Scholar 

  14. Doursat, R.: Programmable architectures that are complex and self-organized: from morphogenesis to engineering. In: Proceedings of 11th International Conference on the Simulation and Synthesis of Living Systems (ALife XI), pp. 181–188 (2008)

    Google Scholar 

  15. Doursat, R.: The self-made puzzle: integrating self-assembly and pattern formation under non-random genetic regulation. Int. J. Complex Syst. 2292 (2008)

    Google Scholar 

  16. Drubin, D. (ed.): Cell Polarity. Oxford University Press, New York (2000)

    Google Scholar 

  17. Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Proceedings of 4th European Conference on Artificial Life, pp. 205–213 (1997)

    Google Scholar 

  18. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    Google Scholar 

  19. Eisenbach, E., et al.: Chemotaxis. Imperial College Press, London (2004)

    Google Scholar 

  20. Eyiyurekli, M., Bai, L., Lelkes, P., Breen, D.: Chemotaxis-based sorting of self-organizing heterotypic agents. In: Proceedings of ACM Symposium on Applied Computing, pp. 1315–1322 (2010)

    Google Scholar 

  21. Eyiyurekli, M., Lelkes, P., Breen, D.: A computational system for investigating chemotaxis-based cell aggregation. In: Proceedings of European Conference on Artificial Life, pp. 1034–1049 (2007)

    Google Scholar 

  22. Eyiyurekli, M., Lelkes, P., Breen, D.: Simulation of chemotaxis-based sorting of heterotypic cell populations. In: Proceedings of IEEE/NIH BISTI Life Science Systems and Applications Workshop, pp. 47–50 (2007)

    Google Scholar 

  23. Eyiyurekli, M., Manley, P., Lelkes, P., Breen, D.: A computational model of chemotaxis-based cell aggregation. BioSystems 93(3), 226–239 (2008)

    Article  Google Scholar 

  24. Fleischer, K.: A multiple-mechanism developmental model for defining self-organizing geometric structures. Ph.D. Thesis, California Institute of Technology (1995)

    Google Scholar 

  25. Fleischer, K.: Investigations with a multicellular developmental model. In: Langton, C.G. Shimohara, K. (eds.) Artificial Life V, pp. 229–230. The MIT Press, Cambridge (1996)

    Google Scholar 

  26. Fleischer, K., Barr, A.: A simulation testbed for the study of multicellular development: the multiple mechanisms of morphogenesis. In: Artificial Life III, pp. 389–408. The MIT Press, Cambridge (1994)

    Google Scholar 

  27. Fleischer, K., Laidlaw, D., Currin, B., Barr, A.: Cellular texture generation. In: Proceedings of ACM SIGGRAPH, pp. 239–248 (1995)

    Google Scholar 

  28. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools: principles and case-study. Int. J. Artif. Intell. Tools 15(2), 173–194 (2006)

    Google Scholar 

  29. Gilbert, S.: Developmental Biology, 8th edn. Sinauer Associates, Sunderland (2006)

    Google Scholar 

  30. Hotz, P.: Combining developmental processes and their physics in an artificial evolutionary system to evolve shapes. In: Kumar, S. Bentley, P. (eds.) On Growth, Form and Computers, pp. 302–318. Academic Press, London (2003)

    Google Scholar 

  31. Keller, E., Segel, L.: Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971)

    Article  Google Scholar 

  32. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 863–868 (1983)

    Article  MathSciNet  Google Scholar 

  33. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    Google Scholar 

  34. Mamei, M., Vasirani, M., Zambonelli, F.: Experiments of morphogenesis in swarms of simple mobile robots. Appl. Artif. Intell 18(9), 903–919 (2004)

    Article  Google Scholar 

  35. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  36. Nagpal, R.: Programmable self-assembly using biologically-inspired multiagent control. In: Proceedings of 1st International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 418–425 (2002)

    Google Scholar 

  37. Nagpal, R., Kondacs, A., Chang, C.: Programming methodology for biologically-inspired self-assembling systems. In: Proceedings of AAAI Spring Symposium on Computational Synthesis: From Basic Building Blocks to High Level Functionality, pp. 173–180 (2003)

    Google Scholar 

  38. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of ACM SIGGRAPH, pp. 25–34 (1987)

    Google Scholar 

  39. Sayama, H.: Swarm chemistry. Artif. Life 15(1), 105–114 (2009)

    Article  Google Scholar 

  40. Sayama, H.: Robust morphogenesis of robotic swarms. IEEE Comput. Intell. 5(3), 43–49 (2010)

    Article  Google Scholar 

  41. Schneider, J., Kirkpatrick, S.: Stochastic Optimization. Springer, Berlin (2006)

    Google Scholar 

  42. Sekimura, T., et al. (eds.): Morphogenesis and Pattern Formation in Biological Systems. Springer, Tokyo (2003)

    Google Scholar 

  43. Shen, W., Will, P., Galstyan, A., Chuong, C.: Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robot 17(1), 93–105 (2004)

    Article  Google Scholar 

  44. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of ACM SIGGRAPH, pp. 319–328 (1991)

    Google Scholar 

  45. Sims, K.: Interactive evolution of equations for procedural models. Vis. Comput. 9(8), 466–476 (1993)

    Article  Google Scholar 

  46. Sims, K.: Evolving virtual creatures. In: Proceedings of ACM SIGGRAPH, pp. 15–22 (1994)

    Google Scholar 

  47. Stoy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: Proceedings of 7th International Symposium on Distributed Autonomous Robotic Systems, pp. 1–10 (2004)

    Google Scholar 

  48. Stoy, K., Nagpal, R.: Self-repair through scale independent self-reconfiguration. In: Proceedings of IEEE/RSJ International Conference on Robots and Systems (IROS), pp. 2062–2067 (2004)

    Google Scholar 

  49. Tanner, H., Jadbabaie, A., Pappas, G.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007)

    Article  MathSciNet  Google Scholar 

  50. Theraulaz, G., Bonabeau, E.: Coordination in distributed building. Nature 269, 686–688 (1995)

    Google Scholar 

  51. Theraulaz, G., Bonabeau, E.: Modeling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400 (1995)

    Article  Google Scholar 

  52. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5, 97–116 (1999)

    Article  Google Scholar 

  53. Werfel, J.: Biologically realistic primitives for engineered morphogenesis. In: Proceedings of 7th International Conference on Swarm Intelligence, pp. 131–142 (2010)

    Google Scholar 

  54. Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile robots with enhanced building blocks. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2787–2794 (2006)

    Google Scholar 

  55. Werfel, J., Ingber, D., Nagpal, R.: Collective construction of environmentally-adaptive structures. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2345–2352 (2007)

    Google Scholar 

  56. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intell. Syst. 21(2), 20–28 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Manolya Eyiyurekli and Dr. Peter Lelkes, who significantly contributed to the development of the cell aggregation simulation system upon which our work builds. This research was supported by NSF grants CCF-0636323 and IIS-0845415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Breen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bai, L., Breen, D.E. (2012). Chemotaxis-Inspired Cellular Primitives for Self-Organizing Shape Formation. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics