Skip to main content

Ranking RDF with Provenance via Preference Aggregation

  • Conference paper
Knowledge Engineering and Knowledge Management (EKAW 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7603))

Abstract

Information retrieval on RDF data benefits greatly from additional provenance information attached to the individual pieces of information. Provenance information such as origin of data, certainty, and temporal information on RDF statements can be used to rank search results according to one of those dimensions. In this paper, we consider the problem of aggregating provenance information from different dimensions in order to obtain a joint ranking over all dimensions. We relate this to the problem of preference aggregation in social choice theory and translate different solutions for preference aggregation to the problem of aggregating provenance rankings. By exploiting the ranking orderings on the provenance dimensions, we characterize three different approaches for aggregating preferences, namely the lexicographical rule, the Borda rule and the plurality rule, in our framework of provenance aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query Results. In: CIDR (2003)

    Google Scholar 

  2. Arrow, K.J.: A Difficulty in the Concept of Social Welfare. Journal of Political Economy 58(4), 328–346 (1950)

    Article  Google Scholar 

  3. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental Reasoning on Streams and Rich Background Knowledge. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 1–15. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An Execution Environment for C-SPARQL Queries. In: EDBT, pp. 441–452. ACM (2010)

    Google Scholar 

  5. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - Extending SPARQL to Process Data Streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k Selection Queries over Relational Databases: Mapping Strategies and Performance Evaluation. ACM Trans. Database Syst. 27(2), 153–187 (2002)

    Article  Google Scholar 

  7. Buneman, P., Kostylev, E.: Annotation algebras for RDFS. In: SWPM, CEUR Workshop Proceedings (2010)

    Google Scholar 

  8. Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for provenance, trust, uncertainty and other meta knowledge in rdf. JWS 7(3), 204–219 (2009)

    Article  Google Scholar 

  9. Fuhr, N.: A Probabilistic Framework for Vague Queries and Imprecise Information in Databases. In: VLDB, pp. 696–707 (1990)

    Google Scholar 

  10. Gehrlein, W.V.: Condorcet’s Paradox. Theory and Decision Library C, vol. 40. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40. ACM, New York (2007)

    Google Scholar 

  12. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A System for the Efficient Execution of Multi-parametric Ranked Queries. In: SIGMOD, pp. 259–270 (2001)

    Google Scholar 

  13. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques in Relational Database Systems. ACM Comput. Surv. 40(4), 11:1–11:58 (2008)

    Article  Google Scholar 

  14. Ilyas, I.F., Shah, R., Aref, W.G., Scott Vitter, J., Elmagarmid, A.K.: Rank-aware Query Optimization. In: SIGMOD, pp. 203–214 (2004)

    Google Scholar 

  15. Kelly, J.: Social Choice Theory: An Introduction. Springer (1988)

    Google Scholar 

  16. KieĂŸling, W.: Foundations of Preferences in Database Systems. In: VLDB, pp. 311–322 (2002)

    Google Scholar 

  17. Kostylev, E.V., Buneman, P.: Combining dependent annotations for relational algebra. In: ICDT, pp. 196–207. ACM, New York (2012)

    Chapter  Google Scholar 

  18. Li, C., Chen-Chuan Chang, K., Ilyas, I.F., Song, S.: RankSQL: Query Algebra and Optimization for Relational Top-k Queries. In: SIGMOD, pp. 131–142 (2005)

    Google Scholar 

  19. Lopes, N., Polleres, A., Straccia, U., Zimmermann, A.: AnQL: SPARQLing Up Annotated RDFS. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 518–533. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Apostol, N., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting Incremental Join Queries on Ranked Inputs. In: VLDB, pp. 281–290 (2001)

    Google Scholar 

  21. Prud’hommeaux, E., Seaborne, A.: Sparql query language for rdf. W3c recommendation, W3C (January 2008)

    Google Scholar 

  22. Straccia, U., Lopes, N., LukĂ¡csy, G., Polleres, A.: A General Framework for Representing and Reasoning with Annotated Semantic Web Data. In: AAAI, pp. 1437–1442 (2010)

    Google Scholar 

  23. Xin, D., Han, J., Cheng, H., Li, X.: Answering Top-k Queries with Multi-Dimensional Selections: The Ranking Cube Approach. In: VLDB, pp. 463–475 (2006)

    Google Scholar 

  24. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for representing, reasoning and querying with annotated semantic web data. JWS 11(0), 72–95 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dividino, R., Gröner, G., Scheglmann, S., Thimm, M. (2012). Ranking RDF with Provenance via Preference Aggregation. In: ten Teije, A., et al. Knowledge Engineering and Knowledge Management. EKAW 2012. Lecture Notes in Computer Science(), vol 7603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33876-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33876-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33875-5

  • Online ISBN: 978-3-642-33876-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics