Skip to main content

Fungal Wood Decay Processes as a Basis for Bioremediation

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

By-products of wood degradationand fungal activities have an important function in the formation of organic soilcomponents and can positively influence the natural succession pattern. The term mycoremediation usually refers to the exploitation of a unique fungal capacity to break down various organopollutants or to remove heavy metals from contaminated substrates but was also expanded on application of fungi to revitalise degraded and organically poor areas. Natural microbial and fungal communities found in degraded and/or contaminated soils and woody substrates represent a heterogeneous potential for remediation. But different ecological factors can hinder and prolong the revitalisation processes. The remediation potential of indigenous microflora can be enhanced with the addition of nutrients (biostimulation) or with the addition of living exogenous organisms into the remediated substrate (bioaugmentation). The substrate used for biostimulation or as an organic amendmentcan also carry a variability of organisms that can express bioremediation potential. The structures and organisation of main components of wood cell walls and high carbon to nitrogen ratio promote wood stability and cause resistance to deterioration and degradation. To promote wood degradation and production of soil organic matter, white-rot fungi can be exploited. It is essential to understand basic processes involved in the wood degradation and succession of organisms to get an insight into mycoremediation principles. With this chapter we introduce the basis of wood degradation and emphasise the influence of exogenously added fungi on the development and stability of indigenous microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2004) prCENT/TS 14961. Solid biofuels – Fuel specifications and classes. European Committee for Standardization, Brussels

    Google Scholar 

  • Aitken MD, Venkatadri R, Irvine RL (1989) Oxidation of phenolic pollutants by a lignin degrading enzyme from the white-rot fungus Phanerochaete chrysosporium. Water Res 23:443–450

    Article  CAS  Google Scholar 

  • Amartey SA, Humar M, Ribeiro A, Helsen L, Ottosen L (2007) Remediation of CCA treated wood waste. In: Gallis C (ed) Management of recovered wood: reaching a higher technical, economic and environmental standard in Europe: proceedings, Klagenfurt, 2–4 May 2007. University studio press, Thessaloniki, pp 117–130

    Google Scholar 

  • Amlinger F, Gotz B, Dreher P, Geszti J, Weissteiner C (2003) Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability – a review. Eur J Soil Biol 39:107–116

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1986) Carbon link between microbial biomass and soil organic matter. In: Megušar F, Gantar M (eds) Perspectives in microbial ecology. Fourth international symposium on microbial ecology, 24–29 August 1986. Slovene Society for Microbiology, Ljubljana, pp 467–471

    Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, Schnurer Y, Oberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ Toxicol Chem 22:1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  PubMed  CAS  Google Scholar 

  • Ashton S, Jackson B, Schroeder R (2007) Storing woody biomass. In: Hubbard W, Biles L, Mayfield C, Ashton S (eds) Sustainable forestry for bioenergy and bio-based products: trainers curriculum notebook. Forest Research Partnership, Athens, GA, pp 149–152

    Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Benjamin/Cumings, Menlo Park

    Google Scholar 

  • Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb Ecol 20:197–209

    Article  CAS  Google Scholar 

  • Aust SD (1995) Mechanisms of degradation by white rot fungi. Environ Health Perspect 103:59–61

    PubMed  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Barthes BG, Manlay RJ, Porte O (2010) Effects of ramial wood amendments on crops and soil: a synthesis of experimental results. Cah Agric 19:280–287

    Google Scholar 

  • Baum S, Sieber T, Schwarze F, Fink S (2003) Latent infections of Fomes fomentarius in the xylem of European beech (Fagus sylvatica). Mycol Prog 2:141–148

    Article  Google Scholar 

  • Belyaeva ON, Haynes RJ (2009) Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresour Technol 100:5203–5209

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol Manage 132:39–50

    Article  Google Scholar 

  • Bennet JW, Connick WJ, Daigle D, Wunch K (2001) Formulation of fungi for in situ bioremediation. In: Gadd GM (ed) Fungi in bioremediation. British Mycological Society, Cambridge, pp 97–112

    Chapter  Google Scholar 

  • Bennet JW, Wunch KG, Faison BD (2002) Use of fungi in biodegradation. In: Hurst CC (ed) Manual of environmental microbiology. ASM, Washington, DC, pp 960–971

    Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Article  Google Scholar 

  • Boddy L (1994) Latent decay fungi: the hidden foe? Arboric J 18:113–135

    Article  Google Scholar 

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194

    Article  PubMed  CAS  Google Scholar 

  • Boddy L (2001) Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecol Bull 49:43–56

    Google Scholar 

  • Boddy L, Rayner ADM (1983) Origins of decay in living deciduous trees: the role of moisture content and a re-appraisal of the expanded concept of tree decay. New Phytol 94:623–641

    Article  Google Scholar 

  • Boddy L, Frankland JC, van West P (eds) (2008) Ecology of saprotrophic basidiomycetes. Academic, Amsterdam

    Google Scholar 

  • Boyle CD (1995) Development of a practical method for inducing white-rot fungi to grow into and degrade organopollutants in soil. Can J Microbiol 41:345–353

    Article  CAS  Google Scholar 

  • Boyle D (1998) Nutritional factors limiting the growth of Lentinula edodes and other white-rot fungi in wood. Soil Biol Biochem 30:817–823

    Article  CAS  Google Scholar 

  • Briceno G, Palma G, Duran N (2007) Influence of organic amendment on the biodegradation and movement of pesticides. Crit Rev Environ Sci Technol 37:233–271

    Article  CAS  Google Scholar 

  • Bridge PD, Prior C (2007) Introduction or stimulation? The association of Stropharia aurantiaca with bark and wood-chip mulches. Eur J Soil Biol 43:101–108

    Article  Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  • Buggeln R (1999) Outside storage of wood chips. Biocycle 40:32–34

    Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium – involvement of the lignin degrading system. Bioessays 6:166–170

    Article  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Caron C, Lemieux G, Lachance L (1998) Regenerating soils with ramial chipped wood. Publication No 83. Laval University, Quebec

    Google Scholar 

  • Ceotto E (2005) The issues of energy and carbon cycle: new perspectives for assessing the environmental impact of animal waste utilization. Bioresour Technol 96:191–196

    Article  PubMed  CAS  Google Scholar 

  • Chefetz B, Hatcher PG, Hadar Y, Chen YN (1996) Chemical and biological characterization of organic matter during composting of municipal solid waste. J Environ Qual 25:776–785

    Article  CAS  Google Scholar 

  • Clausen CA (1996) Bacterial associations with decaying wood: a review. Int Biodeterior Biodegrad 37:101–107

    Article  Google Scholar 

  • Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    Article  PubMed  CAS  Google Scholar 

  • de Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Engelman, Leipzig

    Google Scholar 

  • de Boer W, Van der Wal A (2008) Interactions between saprotrophic basidiomycetes and bacteria. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, Amsterdam, pp 143–153

    Chapter  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  CAS  Google Scholar 

  • Dighton J, White JF, Oudemans P (eds) (2005) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton

    Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry – an ultrastructural view. Phytochemistry 57:859–873

    Article  PubMed  CAS  Google Scholar 

  • Dungan RS, Ibekwe AM, Yates SR (2003) Effect of propargyl bromide and 1,3-dichloropropene on microbial communities in an organically amended soil. FEMS Microbiol Ecol 43:75–87

    Article  PubMed  CAS  Google Scholar 

  • Dunisch O, Lima VC, Seehann G, Donath J, Montoia VR, Schwarz T (2007) Retention properties of wood residues and their potential for soil amelioration. Wood Sci Technol 41:169–189

    Article  CAS  Google Scholar 

  • Eaton R (2000) A breakthrough for wood decay fungi. New Phytol 146:3–4

    Article  Google Scholar 

  • Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. Chapman & Hall, London

    Google Scholar 

  • Elissetche JP, Ferraz A, Freer J, Rodriguez J (2006) Influence of forest soil on biodegradation of Drimys winteri by Ganoderma australe. Int Biodeterior Biodegrad 57:174–178

    Article  CAS  Google Scholar 

  • Elliot ET, Hunt HW, Walter DE, Moore JC (1986) Microcosms, mesocosms and ecosystems: linking the laboratory to the field. In: Megušar F, Gantar M (eds) Perspectives in microbial ecology. Fourth international symposium on microbial ecology, 24–29 August 1986. Slovene Society for Microbiology, Ljubljana, pp 472–480

    Google Scholar 

  • Federici E, Leonardi V, Giubilei MA, Quaratino D, Spaccapelo R, D’Annibale A, Petruccioli M (2007) Addition of allochthonous fungi to a historically contaminated soil affects both remediation efficiency and bacterial diversity. Appl Microbiol Biotechnol 77:203–211

    Article  PubMed  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Ford CI, Walter M, Northott GL, Di HJ, Cameron KC, Trower T (2007) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils. J Environ Qual 36:1599–1608

    Article  PubMed  CAS  Google Scholar 

  • Forge TA, Hogue E, Neilsen G, Neilsen D (2003) Effects of organic mulches on soil microfauna in the root zone of apple: implications for nutrient fluxes and functional diversity of the soil food web. Appl Soil Ecol 22:39–54

    Article  Google Scholar 

  • Frankland JC (1998) Fungal succession – unraveling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  • Gadd GM (ed) (2001) Fungi in bioremediation. British Mycological Society, Cambridge

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Garstang J, Weekes A, Poulter R, Bartlett D (2002) Identification and characterisation of factors affecting losses in the large-scale, non-ventilated bulk storage of wood chips and development of best storage practices URN 02/1535. First Renewables, Leeds

    Google Scholar 

  • Germain D (2007) Ramial chipped wood: the clue to a sustainable fertile soil. Universite Laval, Quebec

    Google Scholar 

  • Giubilei MA, Leonardi V, Federici E, Covino S, Sasek V, Novotny C, Federici F, D’Annibale A, Petrucciolia M (2009) Effect of mobilizing agents on mycoremediation and impact on the indigenous microbiota. J Chem Technol Biotechnol 84:836–844

    Article  CAS  Google Scholar 

  • Graber ER, Dror I, Bercovich FC, Rosner M (2001) Enhanced transport of pesticides in a field trial with treated sewage sludge. Chemosphere 44:805–811

    Article  PubMed  CAS  Google Scholar 

  • Grebenc T, Piltaver A, Kraigher H (2004) Pomen velikih lesnih ostankov bukve (Fagus sylvatica L.) za ohranjanje pestrosti redkih in ogroženih vrst lignikolnih gliv. In: Brus R (ed) Staro in debelo drevje v gozdu. Biotehniška fakulteta, Oddelek za gozdarstvo in obnovljive vire, Ljubljana, pp 47–55

    Google Scholar 

  • Green FI, Clausen CA (2005) Copper tolerance of brown-rot fungi: oxalic acid production in southern pine treated with arsenic-free preservatives. Int Biodeterior Biodegrad 56:75–79

    Article  CAS  Google Scholar 

  • Green F, Larsen MJ, Winandy JE, Highley TL (1991) Role of oxalic-acid in incipient brown-rot decay. Mater Org 26:191–213

    CAS  Google Scholar 

  • Grenni P, Caracciolo AB, Rodriguez-Cruz MS, Sanchez-Martin MJ (2009) Changes in the microbial activity in a soil amended with oak and pine residues and treated with linuron herbicide. Appl Soil Ecol 41:2–7

    Article  Google Scholar 

  • Grinhut T, Hadar Y, Chen Y (2007) Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol Rev 21:179–189

    Article  Google Scholar 

  • Guimaraes BCM, Arends JBA, van der Ha D, Van de Wiele T, Boon N, Verstraete W (2010) Microbial services and their management: recent progresses in soil bioremediation technology. Appl Soil Ecol 46:157–167

    Article  Google Scholar 

  • Hammel KE (1996) Extracellular free radical biochemistry of ligninolytic fungi. New J Chem 20:195–198

    CAS  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CAB, Madison, pp 33–45

    Google Scholar 

  • Harmon ME (2001) Moving towards a new paradigm for woody detritus management. Ecol Bull 49:269–278

    Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  PubMed  CAS  Google Scholar 

  • Harris MJ, Boddy L (2005) Nutrient movement and mycelial reorganization in established systems of Phanerochaete velutina, following arrival of colonized wood resources. Microb Ecol 50:141–151

    Article  PubMed  Google Scholar 

  • Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839

    Article  CAS  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth DL, Colwell RR (1992) Microbial diversity 21: biodiversity amongst microorganisms and its relevance. Biodivers Conserv 1:221–226

    Article  Google Scholar 

  • Hernandez-Apaolaza L, Gasco JM, Guerrero F (2000) Initial organic matter transformation of soil amended with composted sewage sludge. Biol Fertil Soils 32:421–426

    Article  CAS  Google Scholar 

  • Huang DL, Zeng GM, Feng CL, Hu S, Lai C, Zhao MH, Su FF, Tang L, Liu HL (2010) Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresour Technol 101:4062–4067

    Article  PubMed  CAS  Google Scholar 

  • Humar M, Pohleven F (2003a) Mikoremediacija s CCB (Cu/Cr/B) pripravki zaščitenega lesa. In: Glavič P, Brodnjak-Vončina D (eds) Slovenski kemijski dnevi, Maribor, 25. in 26. september 2003. Zbornik referatov s posvetovanja. FKKT, Maribor, pp 1–6

    Google Scholar 

  • Humar M, Pohleven F (2003b) Razstrupljanje odpadnega s CCA ali CCB pripravki zaščitenega lesa z lesnimi glivami. Les 55:89–94

    Google Scholar 

  • Humar M, Pohleven F (2005) Influence of a nitrogen supplement on the growth of wood decay fungi and decay of wood. Int Biodeterior Biodegrad 56:34–39

    Article  CAS  Google Scholar 

  • Humar M, Petrič M, Pohleven F (2001) Changes of the pH value of impregnated wood during exposure to wood-rotting fungi. Holz Roh Werkst 59:288–293

    Article  CAS  Google Scholar 

  • Humar M, Petrič M, Pohleven F, Šentjurc M, Kalan P (2002a) Changes in EPR spectra of wood impregnated with copper-based preservatives during exposure to several wood-rotting fungi. Holzforsch 56:229–238

    Article  CAS  Google Scholar 

  • Humar M, Pohleven F, Kalan P, Amartey S (2002b) Translokacija bakra iz zaščitenega lesa, izpostavljenega glivam razkrojevalkam lesa. Zbornik gozdarstva in lesarstva 67:159–171

    Google Scholar 

  • Humar M, Bučar B, Pohleven F (2006) Brown-rot decay of copper-impregnated wood. Int Biodeterior Biodegrad 58:9–14

    Article  CAS  Google Scholar 

  • Hunt J, Boddy L, Randerson PF, Rogers HJ (2004) An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microb Ecol 47:385–395

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD, Jones EBG (2002) Introduction to fungal succession. Fungal Divers 10:1–4

    Google Scholar 

  • Ishikawa H, Osono T, Takeda H (2007) Effects of clear-cutting on decomposition processes in leaf litter and the nitrogen and lignin dynamics in a temperate secondary forest. J Forest Res 12:247–254

    Article  CAS  Google Scholar 

  • Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538

    PubMed  CAS  Google Scholar 

  • Jellison J (1992) Cation analysis of wood degraded by white- and brown-rot fungi. The International Research Group on Wood Preservation, Document IRG/WP/1552-92:16

    Google Scholar 

  • Jellison J, Jasalavich C (2000) A review of selected methods for the detection of degradative fungi. Int Biodeterior Biodegrad 46:241–244

    Article  Google Scholar 

  • Jellison J, Connolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeterior Biodegrad 39:165–179

    Article  CAS  Google Scholar 

  • Jirjis R (2005) Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenergy 28:193–201

    Article  Google Scholar 

  • Jonsson BG, Kruys N (eds) (2001) Ecology of woody debris in boreal forests. Wallin & Dalholm, Lund

    Google Scholar 

  • Jordan CF (2004) Organic farming and agroforestry: alleycropping for mulch production for organic farms of southeastern United States. Agroforest Syst 61–2:79–90

    Article  Google Scholar 

  • Jurc M (1997) Patogeni – simbionti – endofiti: sinonimi ali samostojne kategorije organizmov? In: Maček J (ed) Zbornik predavanj in referatov 3. slovenskega posvetovanja o varstvu rastlin v Portorožu od 4. do 5. marca 1997. Društvo za varstvo rastlin Slovenije, Ljubljana, pp 285–290

    Google Scholar 

  • Jurc M, Jurc D (1995) Endophytic fungi in the needles of healthy-looking Austrian Pine (Pinus nigra Arn.). Acta Pharm 45:341–345

    CAS  Google Scholar 

  • Jurc D, Ogris N (2006) First reported outbreak of charcoal disease caused by Biscogniauxia mediterranea on Turkey oak in Slovenia. Plant Pathol 55:299

    Google Scholar 

  • Jurc D, Jurc M, Sieber TN, Bojović S (2000) Endophytic Cenangium ferruginosum (Ascomycota) as a reservoir for an epidemic of Cenangium dieback in Austrian Pine. Phyton (Horn) 40:103–108

    Google Scholar 

  • Killham K (1995) Soil ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  PubMed  CAS  Google Scholar 

  • Kokalisburelle N, Rodriguezkabana R (1994) Effects of pine bark extracts and pine bark powder on fungal pathogens, soil enzyme activity, and microbial populations. Biol Control 4:269–276

    Article  Google Scholar 

  • Kowalchuk GA, Gerards S, Woldendorp JW (1997) Detection and characterization of fungal infection of Ammophila arenaria (Marram Grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl Environ Microbiol 63:3858–3865

    PubMed  CAS  Google Scholar 

  • Kowalski T, Kehr RD (1992) Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 44:137–168

    Google Scholar 

  • Kowalski T, Kehr RD (1996) Fungal endophytes of living branch bases in several European tree species. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS, St. Paul, pp 67–86

    Google Scholar 

  • Kuffer N, Gillet F, Senn-Irlet B, Aragno M, Job D (2008) Ecological determinants of fungal diversity on deadwood in European forests. Fungal Divers 30:83–95

    Google Scholar 

  • Lang E, Kleeberg I, Zadrazil F (2000) Extractable organic carbon and counts of bacteria near the lignocellulose-soil interface during the interaction of soil microbiota and white rot fungi. Bioresour Technol 75:57–65

    Article  CAS  Google Scholar 

  • Larsson L, Stenberg B, Torstensson L (1997) Effects of mulching and cover cropping on soil microbial parameters in the organic growing of black currant. Commun Soil Sci Plant Anal 28:913–925

    Article  CAS  Google Scholar 

  • Lemieux G (1993) A universal pedogenesis upgrading processus: RCWs to enhance biodiversity and productivity. Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • Leštan D, Lamar RT (1996) Development of fungal inocula for bioaugmentation of contaminated soils. Appl Environ Microbiol 62:2045–2052

    PubMed  Google Scholar 

  • Leštan D, Leštan M, Chapelle JA, Lamar RT (1996) Biological potential of fungal inocula for bioaugmentation of contaminated soils. J Ind Microbiol 16:286–294

    Article  Google Scholar 

  • Leštan D, Leštan M, Lamar RT (1998) Growth and viability of mycelial fragments of white-rot fungi on some hydrogels. J Ind Microbiol Biotechnol 20:244–250

    Article  Google Scholar 

  • Lindhe A, Asenblad N, Toresson H-G (2004) Cut logs and high stumps of spruce, birch, aspen and oak – nine years of saproxylic fungi succession. Biol Conserv 119:443–454

    Article  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    Article  CAS  Google Scholar 

  • Martinez AT (2007) High redox potential peroxidases. In: Polaina J, MacCabe AP (eds) Industrial enzymes. Springer, Dordrecht, pp 477–488

    Chapter  Google Scholar 

  • Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC (2005) Biodegradation of lignocellulosics: microbial chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  CAS  Google Scholar 

  • McGradySteed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165

    Article  CAS  Google Scholar 

  • McMahon V, Garg A, Aldred D, Hobbs G, Smith R, Tothill IE (2008) Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere 71:1617–1628

    Article  PubMed  CAS  Google Scholar 

  • Moreira MT, Feijoo G, SierraAlvarez R, Lema J, Field JA (1997) Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains. J Biotechnol 53:237–251

    Article  CAS  Google Scholar 

  • Morgan P, Lee SA, Lewis ST, Sheppard A, Watkinson RJ (1993) Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biol Biochem 25:279–287

    Article  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386

    Article  PubMed  CAS  Google Scholar 

  • Mougin C, Boukcim H, Jolivalt C (2009) Soil bioremediation strategies based on the use of fungal enzymes. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Heidelberg, pp 123–149

    Chapter  Google Scholar 

  • Muñoz C, Guillen F, Martinez AT, Martinez MJ (1997) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5

    Article  PubMed  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Wall EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  PubMed  CAS  Google Scholar 

  • Ódor P, Heilmann-Clausen J, Christensen M, Aude E, van Dort KW, Piltaver A, Siller I, Veerkamp MT, Walleyn R, Standovar T, van Hees AFM, Kosec J, Matočec N, Kraigher H, Grebenc T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71

    Article  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegrad 57:129–135

    Article  CAS  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Sanfuentes E, Rodriguez J (2008) Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers 33:77–86

    Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  PubMed  CAS  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3:338–346

    Article  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung J-W (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574

    Article  PubMed  CAS  Google Scholar 

  • Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  CAS  Google Scholar 

  • Petrini O, Fisher PJ (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycol Res 94:1077–1080

    Article  Google Scholar 

  • Piltaver A, Matočec N, Kosec J, Jurc D (2002) Glive na odmrlem bukovem lesu v slovenskih gozdnih rezervatih Rajhenavski Rog in Krokar. Zbornik gozdarstva in lesarstva 69:171–196

    Google Scholar 

  • Piškur B (2009) Successive processes during the decomposition of wood, inoculated with fungus Pleurotus ostreatus on degraded surfaces. PhD thesis, University of Ljubljana, Ljubljana, Slovenia

    Google Scholar 

  • Piškur B, Zule J, Piškur M, Jurc D, Pohleven F (2009) Fungal wood decay in the presence of fly ash as indicated by gravimetrics and by extractability of low molecular weight organic acids. Int Biodeterior Biodegrad 63:594–599

    Article  CAS  Google Scholar 

  • Piškur B, Bajc M, Robek R, Humar M, Sinjur I, Kadunc A, Oven P, Rep G, Al Sayegh Petkovšek S, Kraigher H, Jurc D, Pohleven F (2011a) Influence of Pleurotus ostreatus inoculation on wood degradation and fungal colonization. Bioresour Technol 102:10611–10617

    Article  PubMed  CAS  Google Scholar 

  • Piškur B, Pavlic D, Slippers B, Ogris N, Maresi G, Wingfield M, Jurc D (2011b) Diversity and pathogenicity of Botryosphaeriaceae on declining Ostrya carpinifolia in Slovenia and Italy following extreme weather conditions. Eur J Forest Res 130:235–249

    Article  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  PubMed  CAS  Google Scholar 

  • Ponge JF (2005) Fungal communities: relation to resource succession. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem. Taylor & Francis, Boca Raton, pp 169–180

    Chapter  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Its biology and ecology. Wiley, Chichester

    Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  • Šašek V, Cajthaml T, Bhatt M (2003) Use of fungal technology in soil remediation: a case study. Water Air Soil Pollut Focus 3:5–14

    Google Scholar 

  • Scheel T, Hofer M, Ludwig S, Holker U (2000) Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds. Appl Microbiol Biotechnol 54:686–691

    Article  PubMed  CAS  Google Scholar 

  • Schmidt O (2006) Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin

    Google Scholar 

  • Schmidt KR, Chand S, Gostomski PA, Boyd-Wilson KSH, Ford C, Walter M (2005) Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog 21:377–385

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko SM, Bailey GW (1996) Life after death: lignin-humic relationships reexamined. Crit Rev Environ Sci Technol 26:95–153

    Article  CAS  Google Scholar 

  • Shimada M, Ma DB, Akamatsu Y, Hattori T (1994) A proposed role of oxalic-acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiol Rev 13:285–296

    Article  CAS  Google Scholar 

  • Shortle WC (1990) Ionization of wood decay during previsual stages of wood decay. Biodeterior Res 3:333–348

    Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Book  Google Scholar 

  • Šnajdr J, Baldrian P (2006) Production of lignocellulose-degrading enzymes and changes in soil bacterial communities during the growth of Pleurotus ostreatus in soil with different carbon content. Folia Microbiol 51:579–590

    Article  Google Scholar 

  • Solbraa K (1979a) Composting of bark. I. Different bark qualities and their uses in plant production. Rep Norweg Forest Res Inst 34:285–328

    Google Scholar 

  • Solbraa K (1979b) Composting of bark. II. Laboratory experiments. Rep Norweg Forest Res Inst 34:339–384

    Google Scholar 

  • Steffen K, Tuomela M (2010) Fungal soil bioremediation: developments towards large-scale applications. In: Hofrichter M (ed) Industrial applications. Springer, Heidelberg, pp 451–467

    Chapter  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Swift MJ (1977) The ecology of wood decomposition. Sci Prog (Oxf) 64:175–199

    CAS  Google Scholar 

  • Tahboub MB, Lindemann WC, Murray L (2008) Chemical and physical properties of soil amended with pecan wood chips. Hortscience 43:891–896

    Google Scholar 

  • Takao S (1965) Organic acid production by Basidiomycetes. I. Screening of acid-producing strains. Appl Microbiol 13:732–737

    PubMed  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363

    Article  Google Scholar 

  • Torelli N (1986) Zgradba lesa. Biotehniška fakulteta, Oddelek za lesarstvo, Ljubljana

    Google Scholar 

  • Tornberg K, Baath E, Olsson S (2003) Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biol Fertil Soils 37:190–197

    CAS  Google Scholar 

  • Tucker B, Radtke C, Kwon SI, Anderson AJ (1995) Supression of bioremediation by Phaneorchaete chrysosporium by soil factors. J Hazard Mater 41:251–265

    Article  CAS  Google Scholar 

  • Tuomela M, Lyytikäinen M, Oivanen P, Hatakka A (1998) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem 31:65–74

    Article  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Uffen RL (1997) Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6

    Article  CAS  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  • Valentin L, Kluczek-Turpeinen B, Oivanen P, Hatakka A, Steffen K, Tuomela M (2009) Evaluation of basidiomycetous fungi for pretreatment of contaminated soil. J Chem Technol Biotechnol 84:851–858

    Article  CAS  Google Scholar 

  • Valentín L, Kluczek-Turpeinen B, Willför S, Hemming J, Hatakka A, Steffen K, Tuomela M (2010) Scots pine (Pinus sylvestris) bark composition and degradation by fungi: potential substrate for bioremediation. Bioresour Technol 101:2203–2209

    Article  PubMed  CAS  Google Scholar 

  • van der Wal A, De Boer W, Smant W, van Venn JA (2007) Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant Soil 301:189–201

    Article  CAS  Google Scholar 

  • van Elsas JD, Duarte GF, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151

    Article  PubMed  Google Scholar 

  • Vesel Tratnik N, Pohleven F (1995) Sukcesija in interakcija gliv povzročiteljic piravosti bukovine. Zbornik gozdarstva in lesarstva 46:163–176

    Google Scholar 

  • Vidic I (2008) Degradation of chlorinated organic biocides by lignolytic fungi. MSc thesis, University of Ljubljana, Ljubljana, Slovenia

    Google Scholar 

  • Visser S, Maynard D, Danielson RM (1998) Response of ecto- and arbuscular mycorrhizal fungi to clear-cutting and the application of chipped aspen wood in a mixedwood site in Alberta, Canada. Appl Soil Ecol 7:257–269

    Article  Google Scholar 

  • Wilcox WW (1993) Comparative morphology of early stages of brown-rot wood decay. IAWA J 14:127–138

    Google Scholar 

  • Wilson D (1995) Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Winquist E, Valentin L, Moilanen U, Leisola M, Hatakka A, Tuomela M, Steffen KT (2009) Development of a fungal pre-treatment process for reduction of organic matter in contaminated soil. J Chem Technol Biotechnol 84:845–850

    Article  CAS  Google Scholar 

  • Woodward S, Boddy L (2008) Interactions between saprothropic fungi. In: Boddy L, Frankland JC, Van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, Amsterdam, pp 125–141

    Chapter  Google Scholar 

  • Zabel RA, Morrell JJ (1992) Wood microbiology. Decay and its prevention. Academic, San Diego

    Google Scholar 

Download references

Acknowledgment

The financial support from the Slovenian Research Agency through the research programmes P4-0107 and P4-0015 and the research project L4-3641 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Piškur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piškur, B., Humar, M., Ulčnik, A., Jurc, D., Pohleven, F. (2013). Fungal Wood Decay Processes as a Basis for Bioremediation. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_3

Download citation

Publish with us

Policies and ethics