Skip to main content

Intelligent Prescription-Diagnosis Function for Rehabilitation Training Robot System

  • Conference paper
  • 4482 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7507))

Abstract

A prescription-diagnosis function based on integrating support vector machine and generalized dynamic fuzzy neural networks (SVM-GDFNN) is developed to automatically recommend a suitable training mode to the impaired limb. Considering the outstanding generalization ability and misclassified samples mainly distributed nearby the support vector for SVM method, SVM is adopted to recommend a preliminary prescription diagnosis for the sample and GDFNN is employed to rediagnose the sample nearby the support vector. Finally, the training mode of impaired limb is prescribed according to the designed principles. In addition, wavelet packet decomposition is applied to extract the features representing the impaired-limb movement performance. Clinical experiment results indicate that the suggested method can effectively reduce the misdiagnosis and serve with a high diagnostic accuracy. Meanwhile, the designed rehabilitation system well manages the promising prescription-diagnosis function, improving the intelligent level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Culmer, P.R., Jackson, A.E., Makower, S.: A control strategy for upper limb robotic rehabilitation with a dual robot system. IEEE/ASME Transactions on Mechatronics 15, 575–585 (2010)

    Article  Google Scholar 

  2. Xu, B.G., Peng, S., Song, A.G.: Robot-aided upper-limb rehabilitation based on motor imagery EEG. Int. J. Adv. Robotic Sy. 8, 88–97 (2011)

    Google Scholar 

  3. Bovolenta, F., Sale, P.: Robot-aided therapy for upper limbs in patients with stroke-related lesions: Brief report of a clinical experience. Journal of Neuro Engineering and Rehabilitation 8 (2011)

    Google Scholar 

  4. Laura, M.C., David, J.R.: Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation 6 (2009)

    Google Scholar 

  5. Choi, Y., Gordon, J., Kim, D.: An adaptive automated robotic task-practice system for rehabilitation of arm functions after stroke. IEEE Transactions on Robotics 25, 556–568 (2009)

    Article  Google Scholar 

  6. Wolbrecht, E.T., Chan, V., Reinkensmeyer, D.J., Bobrow, J.E.: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 16, 286–297 (2008)

    Article  Google Scholar 

  7. Podobnik, J., Novak, D., Munih, M.: Grasp coordination in virtual environments for robot-aided upper extremity rehabilitation. Biomedical Engineering-Applications Basis Communications 23, 457–466 (2011)

    Article  Google Scholar 

  8. Novak, D., Mihelj, M., Ziherk, J.: Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19, 400–410 (2011)

    Article  Google Scholar 

  9. Gopura, R.A.R.C., Kiguchi, K.: An exoskeleton robot for human forearm and wrist motion assist-hardware design and EMG-based controller. Journal of Advanced Mechanical Design Systems and Manufacturing 2, 1067–1083 (2008)

    Article  Google Scholar 

  10. Nuryani, N., Ling, S.S.H., Nguyen, H.T.: Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection. Annals of Biomedical Engineering 40, 934–945 (2012)

    Article  Google Scholar 

  11. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

    Google Scholar 

  12. Kim, K.J., Ahn, H.: A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Computers & Operations Research 39, 1800–1811 (2012)

    Article  MathSciNet  Google Scholar 

  13. Wu, S.Q., Er, M.J., Gao, Y.: A fast approach for automatic generation of fuzzy rulers by generalized dynamic fuzzy neural networks. IEEE Trans. Fuzzy Systems 9, 578–594 (2001)

    Article  Google Scholar 

  14. Lim, W.K., Er, M.J.: Classification of mammographic masses using generalized dynamic fuzzy neural networks. Medical Physics 31, 1288–1295 (2004)

    Article  Google Scholar 

  15. Ju, M.S., Lin, C.C.K., Lin, D.H., Hwang, I.S.: A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13, 349–358 (2005)

    Article  Google Scholar 

  16. Sina, Z.M., Alireza, A., Javad, A.: A fast expert system for electrocardiogram arrhythmia detection. Expert Systems 27, 180–200 (2010)

    Article  Google Scholar 

  17. Rosso, O.A., Martin, M.T., et al.: EEG analysis using wavelet-based information tools. Journal of Neuroscience Methods 153, 163–182 (2006)

    Article  Google Scholar 

  18. Xu, G.Z., Song, A.G., Li, H.J.: Control system design for an upper-limb rehabilitation robot. Advanced Robotics 25, 229–251 (2011)

    Article  Google Scholar 

  19. Song, A.G., Wu, J., Qin, G., et al.: A novel self-decoupled four degree-of-freedom wrist force/torque sensor. Measurement 40, 883–891 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, L., Song, A., Xu, G., Li, H., Xu, B. (2012). Intelligent Prescription-Diagnosis Function for Rehabilitation Training Robot System. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33515-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33515-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33514-3

  • Online ISBN: 978-3-642-33515-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics