Skip to main content

Propagative Mode in a Lattice-Grain CA: Time Evolution and Timestep Synchronization

  • Conference paper
Book cover Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

Abstract

The void propagation defines a long-range interaction in granular matter. We detail a logic scheme simulating the propagation and implemented in a 2d cellular automata applied to granular flow. The CA belongs to the family of “lattice-grain” automata (LGrA) with one particle per cell. We focus first on the influence of inertia, or “memory effect”, on the flow patterns. The propagative mode is presented afterwards: it implies that transition and timestep must be considered at two different time scales. Although a CA is usually driven by local, nearest-neighbor communications, it follows here that the timestep termination must be detected at each transition, that involves a perpetual and global communication within the network to synchronize the timestep. An all-to-all “systolic gossiping” underlies the framework of this void propagation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  2. Baxter, G.W., Behringer, R.P.: Cellular automata models of granular flow. Phys. Rev. A 42, 1017–1020 (1990)

    Article  Google Scholar 

  3. Fitt, A.D., Wilmott, P.: Cellular-automaton model for segregation of two-species granular flow. Phys. Rev. A 45(4), 2383–2388 (1992)

    Article  MathSciNet  Google Scholar 

  4. Peng, G., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice-gas automata. Phys. Rev. E 49, R1796–1799 (1994)

    Article  Google Scholar 

  5. Károlyi, A., Kertész, J., Havlin, S., Makse, H.A., Stanley, H.E.: Filling a silo with a mixture of grains: friction-induced segregation. Europhys. Lett. 44(3), 386–392 (1998)

    Article  Google Scholar 

  6. Ktitarev, D.V., Wolf, D.E.: Stratification of granular matter in a rotating drum: cellular automaton modelling. Granular Matter 1, 141–144 (1998)

    Article  Google Scholar 

  7. Désérable, D., Masson, S., Martinez, J.: Influence of exclusion rules on flow patterns in a lattice-grain model. In: Kishino, Y. (ed.) Powders and Grains 2001, Balkema, pp. 421–424 (2001)

    Google Scholar 

  8. Cisar, S.E., Ottino, J.M., Lueptow, R.M.: Geometric effects of mixing in 2D granular tumblers using discrete models. AIChE Journal 53(5), 1151–1158 (2007)

    Article  Google Scholar 

  9. Désérable, D., Dupont, P., Hellou, M., Kamali-Bernard, S.: Cellular automata in complex matter. Complex Systems 20(1), 67–91 (2011)

    MathSciNet  Google Scholar 

  10. Désérable, D.: A versatile two-dimensional cellular automata network for granular flow. SIAM J. Applied Math. 62(4), 1414–1436 (2002)

    Article  MATH  Google Scholar 

  11. Cottenceau, G., Désérable, D.: Open Environment for 2d Lattice-Grain CA. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 12–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Litwiniszyn, J.: Application of the equation of stochastic processes to mechanics of loose bodies. Archivuum Mechaniki Stosowanej 8(4), 393–411 (1956)

    MathSciNet  MATH  Google Scholar 

  13. Müllins, W.W.: Stochastic theory of particle flow under gravity. J. Appl. Phys. 43, 665–678 (1972)

    Article  Google Scholar 

  14. Sakagushi, H., Ozaki, E., Igarashi, T.: Plugging of the flow of granular materials during the discharge from a silo. Int. J. Mod. Phys. 7(9,10), 1949–1963 (1993)

    Google Scholar 

  15. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1964)

    Google Scholar 

  16. Umeo, H.: Firing squad synchronization problem in cellular automata. Encyclopedia of Complexity and Systems Science, 3537–3574 (2009)

    Google Scholar 

  17. Liestman, A.L., Richards, D.: Perpetual gossiping. Parallel Processing Letters 3(4), 347–355 (1993)

    Article  MathSciNet  Google Scholar 

  18. Kung, H.T., Leiserson, C.E.: Systolic arrays for VLSI. In: Mead, Conway (eds.) Introduction to VLSI systems, pp. 271–292. Addison-Wesley, Reading (1980)

    Google Scholar 

  19. Flammini, M., Pérennes, S.: Lower bounds on systolic gossip. Information and Computation 196(2), 71–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Désérable, D.: A family of Cayley graphs on the hexavalent grid. Discrete Applied Math. 93, 169–189 (1999)

    Article  MATH  Google Scholar 

  21. Heydemann, M.C., Marlin, N., Pérennes, S.: Complete rotations in Cayley graphs. European Journal of Combinatorics 22(2), 179–196 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Désérable, D.: Systolic dissemination in the arrowhead (unpublished)

    Google Scholar 

  23. Alonso-Sanz, R., Martin, M.: Elementary cellular automata with memory. Complex Systems 14(2), 99–126 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Comm. ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  25. Désérable, D., Lominé, F., Dupont, P., Hellou, M.: Propagative mode in a lattice-grain CA: time evolution and Galilean invariance (to be submitted to) Granular Matter

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Désérable, D. (2012). Propagative Mode in a Lattice-Grain CA: Time Evolution and Timestep Synchronization. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics